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Abstract

Maintaining the topology of an expanding wavefront surface allows for
a simple time-domain wave ray launching model that is free from the prob-
lems associated with ray catching. Using interpolation over the surface
of this wavefront surface, the model easily incorporates diffracted waves
and power density changes from beam spreading. These improvements
allow for an increase in model accuracy without excessive computational
burden.

1 Introduction

Ray tracing and launching methods have become popular for predicting wave
propagation in complex geometries. Ray tracing methods trace “dominant”
paths from source to receiver [1]. This can result in a large number of redundant
rays being traced if the model has many receiver points. Ray launching reduces
this computational burden by tracing a fixed number of rays from the source,
which are followed as they scatter around the geometry. If they pass sufficiently
close to a receiver point, they contribute to that receiver’s response. This leads
to the problem of “ray catching,” where rays can be “double counted” at a
receiver [3].

This paper describes a method of ray launching that avoids double count-
ing by respecting the topological structure of the moving wavefront. Unlike
ray catching, in which the wavefront is extrapolated to the receiver point, this
method interpolates the wavefront to the receiver point. This avoids causing
errors associated with extending the wavefront beyond its true extent. The
topological information also allows accurate wavefront power densities to be
computed purely from geometric considerations.



2 Topological Aspects of Wavefront Propaga-
tion

The aim of this paper is to present a method for computing the solution to the
scalar wave equation

∇2u− 1
c2

∂2u

∂t2
= f(x, t), (x, t) ∈ Ω× R+. (1)

This equation can be used to predict electromagnetic wave propagation
where polarization is not expected to be an issue, or in small-amplitude acoustic
settings. Typical indoor or outdoor urban environments do not show marked
differences in electromagnetic wave propagation due to polarization [2].

2.1 Waves in Unbounded Media

When the spatial domain Ω is of odd dimension, Huygen’s principle ensures that
there are well-defined wavefronts [4]. In an unbounded spatial domain, where
Ω = R3, this is apparent from the Green’s function of (1),

Gu(x, ξ, t, τ) =
δ (|x− ξ| − c(t− τ))
4π (|x− ξ| − c(t− τ))

. (2)

The locus of points where G(x, ξ, t, τ) 6= 0 is called a “wavefront”. In general,
the “wavefront set” shall be defined as

W (ξ, τ) =
{
(x, t) ∈ Ω× R+ | G(x, ξ, t, τ) 6= 0

}
, (3)

where G is the Green’s function relevant to the particular spatial geometry
Ω. In unbounded media, the wavefront set does not change topologically with
time; it is always spherical.

2.2 Reflecting Half-Space

If an infinite, flat boundary is introduced, the method of images leads to a new
Green’s function for (1),

Gh(x, ξ, t, τ) = Gu(x, ξ, t, τ)−Gu(x, ξ′, t, τ), (4)

where ξ′ is the image of ξ reflected across the boundary. It is evident that
the wavefront set of this Green’s function does not undergo topological change.
Like the unbounded case, it is always topologically equivalent to a sphere.

2.3 Diffraction and Topological Change

Diffraction causes the topology of the wavefront set to change in the vicinity of
sharp boundary edges. Since diffraction is dispersive, the wavefront set is no
longer confined to a thin surface once it occurs. The Uniform Theory of Diffrac-
tion (UTD) predicts that diffracted wave power falls off like t−3/2 at a given



Figure 1: Incident, reflected, and diffracted wavefronts

point (Equation (16) of [5]). In light of this, it is reasonable to assume that
the diffracted wave can be approximated by confining its power to the “leading
edge” of the wavefront set. This removes the dispersive effects of diffraction,
and makes diffracted waves easy to model with the wavefront approach. This
approximation restricts the frequencies the model can accurately treat and in-
troduces a small time delay error. Further, a scalar wave model ignores the
polarization-dependent effects of electromagnetic wave diffraction. To mitigate
these concerns, frequency- and polarization-specific diffraction coefficients must
be chosen for the operating frequency and incident polarization. Alternatively,
one may use empirical diffraction coefficients that explicitly ignore frequency,
phase delay, and polarization [6].

Having motivated a non-dispersive scalar approximation for diffraction, we
now look at how diffraction changes wavefront topology. Diffraction occurs
when a wavefront crosses an edge in the boundary; wavefront points on one
side of the edge are sent off at vastly different angles from those on the other
side. The continuity of the wavefront is disrupted along such an edge, cutting
the incident wavefront into two distinct pieces. This discontinuity is smoothed
out by the introduction of a diffracted wave. Using the UTD approximation,
the edge begins to emit a diffracted wave when it is touched by an incident
wavefront [5].

3 Storage of Topological Information

In the wavefront launching model, the wavefront set is sampled both in space and
in time, resulting in a collection of discrete points. A unit vector representing



Figure 2: Points, rays, and linkages of a “cube”

the motion of the wavefront is tied to each of these points and fills the same role
as rays do in ray tracing or launching models. The topology of the wavefront
is represented by maintaining links between adjacent points both in space and
in time. This allows new points or rays to be interpolated anywhere in the
wavefront set.

A group of four wavefront points that form a link-connected loop in space
is called a “patch”. Two patches that are linked in the time dimension are
called a “cube”. (See Figure 2) It is often of interest to know if a wavefront
crosses a particular point in space x over a given interval of time [t0, t1]: that
is, if x belongs to the set W (ξ, τ) ∩ Ω × [t0, t1]. This problem may be solved
computationally by checking if the point of interest can be found in any of the
wavefront’s cubes that are valid on the time interval of interest. This eliminates
the problem of ray-catching, since the wavefront is interpolated rather than
extrapolated to the point. Further, the incident power density at any point on
the patch is easy to calculate: the wave power at the four points on the patch
is smoothly distributed over the surface of the patch.

4 Propagation of the Wavefront

The wavefront model generates the wavefront set by propagating snapshots of
the wavefront at earlier times. It uses two previous snapshots (points, rays, and
spatial linkages) Wi−1 and Wi to generate a new one Wi+1, where each Wn is
valid over t ∈ [tn−1, tn]. Where rays do not cross a diffracting edge, they are
propagated according to the usual rules of ray tracing. (See, for example, [1] or
[3])



When a point on the wavefront comes near a diffracting edge, the wavefront
model checks to see if any of the cubes containing that point intersect the edge.
If so, then a new diffracted wavefront will be launched from that edge. The
incident wavefront’s rays will be unaffected by the diffracting edge, although
the links of the incident wavefront will be broken along the edge.

The structure of the diffracted wave is created from the incident wave by
decomposing the patches incident on the edge. It is important to realize that
a diffracted wave develops as different patches of the incident wavefront cross
the edge at different times. It is important to allow these patches to duplicate
points and rays along the edges if there is no explicit topological linkage between
them. That way, the diffracted wave can form over several time steps. (This is
not the most memory efficient approach, but it is simple and fast.)

Once the patches for generating the diffracted wave are found, each one is
used to create a family of diffracted wave patches. Since the diffracting edge
generates the diffracted wave, the diffracted wave patches must be launched from
that edge. The launch points are found by projecting each incident patch onto
the edge. To simplify matters geometrically, the two points that are farthest
apart are used as launch points for the diffracted patches. Then the rays are
built by decomposing them into components. The ray component parallel to
the edge is computed by projecting the incident ray onto the edge:

e · v
‖e‖2

, (5)

where v is the incident ray, and e is parallel to the edge.
The components normal to the edge are built by the following formula

F(θ) =
t1 cos θ + t2 sin θ

‖t1 cos θ + t2 sin θ‖
, (6)

where the parameter θ is controlled by

θ ∈


[

π
2 , 2π

]
if t1 · t1 + t1 · t2 > 0

and
t2 · t2 + t1 · t2 > 0[

0, π
2

]
otherwise

, (7)

and the vectors t1 and t2 are normal to e and contained in the faces adjacent
to the edge. Then the ray directions can be computed as

D(θ) =
∥∥∥∥v − e · v

‖e‖2
e
∥∥∥∥F(θ) +

e · v
‖e‖2

e. (8)

Observe that by sweeping θ over the range of values specified in (7), a family
of diffracted patches is generated for the incident patch. The diffracted wave
power levels are then assigned to each point using UTD [5] or a similar approx-
imation [6], and the diffracted wave topology is assembled using the topology
induced by D(θ).



Figure 3: Relative power density (dB) and RMS delay spread (s) without diffrac-
tion (top row) and with diffraction (bottom row)

5 Instrumentation

One of the most attractive features of ray models is that the impulse response
of the channel is easy to compute [1]. From this, useful parameters such as
the RMS delay spread can be extracted to yield predictions of coverage. The
ray tracing, ray launching, and the wavefront launching methods sample the
impulse response at given locations in space. The impulse response data contains
wavefront arrival time, direction, and power density. The arrival direction allows
the user to explore the use of directional antennas to cure multipath problems.

6 Results

6.1 Discussion of Images

Figure 3 shows the results of this model on a two room geometry. Despite
appearances, the model is three dimensional. There is a single source, which
appears near the center of the left room. Each of the walls is perfectly reflective,
and there is a 3 dB attenuating window in the middle of the hallway. The plots
on the left side of the figure are peak power density plots, and those on the



right are RMS delay spread. The left plots indicate the signal strength of the
dominant path. The RMS delay spread plots give an indication of multipath.

The simulation was stopped after most of the signal had entered the right
room, but before it reflected too many times. One can still see the wavefront
structure in the upper half of the right room. It is evident that the diffracted
waves contribute strongly to the multipath situation in the shadowed region
of the right room. A strong diffracted wave reaches into the shadowed region
well before the specular components from the incident wave. This results in
a large delay spread, and therefore would be problematic for wideband digital
communications.

6.2 Discretization problems

The wavefront method avoids most discretization problems associated with ray
launching, since it interpolates the wavefront between points on the wavefront
set. However, discretization becomes evident when using a diffraction model,
since diffracting edges cut apart incident wavefronts. If the wavefront is not
sampled with enough points, these cuts will become jagged. This leaves gaps
between the diffracted wavefront and the incident wavefront, which result in
lost impulse response data. Some of these gaps can be seen in the lower plots of
Figure 3, where they look a little like streaky noise. The best solution for this
problem is to resample incident wavefronts along a diffracting edge so that the
cuts do not become jagged.

7 Future Work

7.1 Ray resampling

Like all numerical solvers for the wave equation, the wavefront model loses ac-
curacy after a long period of simulation. This occurs when adjacent points
become quite far apart. The wavefront set gradually becomes poorly sampled,
and interpolating points on it is likely to be inaccurate. It seems that this prob-
lem could be alleviated by interpolating new points and rays onto the surface
of the wavefront as time elapses. This would help avoid the discretization that
appears in the diffraction results, and would also yield more accurate power
density calculations.

7.2 Vector-wave models

The model presented here is a scalar model, which is assumed to be a good ap-
proximation of electromagnetic phenomena even though electromagnetic waves
are polarized. The reflection and diffraction coefficients of many materials re-
spond differently to waves of different polarization, so a vector wave formulation
would allow the wavefront model to handle these sorts of materials.



8 Conclusions

Maintaining the topology of the wavefront allows for a simple time-domain wave
propagation model that is free from the problems associated with ray catching.
Using interpolation over the surface of the wavefront, this model easily incorpo-
rates diffracted waves and power density changes from beam spreading. These
improvements allow for an increase in model accuracy without excessive com-
putational burden.
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