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Topological localization via signals of opportunity
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Abstract—We consider the problems of localization, disam-
biguation, and mapping in a domain filled with signals-of-
opportunity generated by transmitters. One or more (static or
mobile) receivers utilize these signals and from them characterize
the domain, localize, disambiguate, etc. The tools we develop are
topological in nature, and rely on interpreting the problem as one
of embedding the domain into a sufficiently high-dimensional
space of signals via a signal profile function. A variety of
different scenarios are addressed, including varying signal types
(TOA, TDOA, DOA, etc.), incorporating mobile receivers, and
discretizing the signal space as a model of coarse/uncertain signal
processing.

Index Terms—sensor networks, opportunistic signals, mapping,
localization

I. INTRODUCTION

HIS article examines problems associated with local-

ization, disambiguation, and mapping via ambient and
uncontrolled signal sources of opportunity. In particular, we
consider the case in which a mobile sensor/receiver collects
relatively coarse signal data from several transmitters, perhaps
to perform inference or reconstruction a posteriori. The (one
or perhaps several) mobile sensor does not communicate
with the rest of the network during the collection time and
has little-to-no geographic data about its environment. We
are motivated by minimal-sensing scenarios with a general
lack of localization, as exemplified in (1) underground or
underwater receivers, (2) multistatic radar disambiguation, or
(3) adversarial or covert operations, in which the avoidance
of detectable communication (or even self-interference) is
paramount. We begin with a continuum approximation to the
problem, develop the appropriate topological/geoemtric tools
in this setting, then quantize the sensing and localization data
along with the solution in a manner that is functorial — it
respects the sensing operations.

A. An elementary example

We illustrate the themes of this paper with a trivial example.
Consider a compact connected line segment D C R. Assume
that there exist IV transmitters in R of fixed location which
asynchronously emit a pulse whose time of arrival can be
measured by a receiver at any location in D. To what extent do
the received TOA (time of arrival) signals uniquely localize the
receiver? Consider the signal profile mapping P : D — RV
that records the TOA of the N (received, identified, and
ordered) transmitter pulses. Clearly, this map P is continuous,
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and a generic perturbation of this map embeds the interval D
into the “signals space” RY for N > 2. Thus, a generic choice
of signal profile mapping P is generically injective, implying
unique channel response and the feasibility of localization in
D via TOA.

This trivial observation is greatly generalizable to more
arbitrary domains D, encoding both physical and temporal
data. In addition, one may modify the signals space to record
different signals received from the transmitters. For example,
DOA (direction of arrival) records bearing data; TDOA (time
difference of arrival) reduces the dimension of the TOA signals
space by one. More generally, one may build a transmitted
signals space S from the individual transmitters and then
reduce S by some modulation (a quotient map ) to a received
signals domain R. For example, the quotient of TOA signals
S = RY by the action of the symmetric group Sy — as a
model of the receiver’s inability to identify target sources —
yields as R a singular polytope.

The key insight of this paper is that replacing TOA or TDOA
with any reasonable transmitter signal space S and modulation
® : § — R to areceived signals space of sufficient dimension
preserves the ability to localize: the induced SIGNAL PROFILE
MAP: P : D — R will be generically injective as a function
of dimension alone.

There are at least two unrealistic assumptions in this sim-
plistic model: global signal propagation and infinite precision.
In realistic environments, power limitations, obstacles, and
directed transmissions conspire to limit the geometric extent of
signal transmissions. This has the deleterious effect of making
the signal profile mapping discontinuous, perhaps highly so in
the setting of many transmitters. Our response is to construct
a subcover of the domain on which a stable set of signals is
heard. These stable regions are then pieced together to give
a received signal profile mapping P : D — R which can
be analyzed via differential-topological methods. The second
problem addressed is that of accurate signal measurements:
a poor assumption in many circumstances. We discretize the
codomain of the signal profile map P D — R and
prove that a sufficiently fine discretization of R provides
a reasonably discretized approximation to the image of D.
Coarser discretizations are permissible, and this yields very
suggestive results for inference from minimal sensing.

B. Statement of results

We assume a compact domain D for receivers and a generic
(to be specified carefully) set of transmitters providing a
signals profile as per the assumptions of §II-C. Under these
assumptions:

1) We prove a sufficient condition for receiver localization

based on opportunistic signals as a function of the
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number and stable coverage of transmitters. This Signals
Embedding Theorem is independent of the signal type
(TOA, TDOA, DOA, etc.) and transmitter identification
and permits fusion of multiple signal types.

2) Given a discretization of the signals into a finite alphabet
of geometrically small cells, we prove that the code
words as perceived by the receiver localize up to small
cells. The diameters of these cells tend to zero as the
partition of the signal domain is refined.

3) We verify our results experimentally using simple acous-
tic sounders. This demonstrates conclusively the feasi-
bility of implementing these results in sensing contexts.
Indeed, the equipment used for our experiment, though
far from sufficient for the purpose of SONAR ranging
or imaging, performs well for the task of detecting a
change in the topology of the domain and validating our
assumptions about the signal profile. Our experimental
results also indicate the amount of signal corruption such
a localization system can tolerate.

We emphasize that, as the methods employed are topo-
logical, the inferences possible are likewise topological, as
opposed to rigidly geometric. Changes in the topology of a
domain over time (How many buildings/obstacles are present?
Is the window open?) are by no means unimportant.

C. Related work

There are many applications in which the signal sources
are either unknown or uncontrolled, and yet their localizaton
within the environment is still important. One of the most
direct applications of this idea is the World-Wide Lightning
Localization Network [1], which locates lightning strikes on
the earth to within a few kilometers. This system uses a
collection of radio sensors distributed on the earth’s surface to
correlate lightning strike arrival times. That such a distributed
network can perform localization tasks under a variety of error
models has been more extensively addressed in [2], [3].

Applications of opportunistic remote sensing are copious,
as it is advantageous to exploit existing signal sources in
the environment rather than create additional ones. Knowing
a sources’ position, power level, and waveform can greatly
expedite its exploitation. Even in the best situation, in which
the source and receiver locations are known, the required
processing can be complicated [4]. Many of these algorithms
consist of lifting traditional radar processing algorithms into a
more general framework, such as Fourier transform methods
[5], [6], time reversal [7], [8], equalization [9], [10], or Green’s
function approaches [11], [12].

Most experimental applications of opportunistic sensing in
radar have focused on the use of large, publicly-recorded
signal sources, such as digital broadcasters [13], [14], [15],
[16], [17]. When such sources are not available, researchers
have turned to the development of elaborate receivers with
highly directive, steerable antennae [18]. We take a different
approach, focusing on simple, inexpensive acoustic sounders
that permit controlled experiments to be run in a laboratory
setting.

These existing solutions suffer from a number of inherent
limitations. Most evidently, they require intimate knowledge

of source or receiver location and configuration. Additionally,
they cannot reliably handle multipath (reflections, refractions,
or diffractions of signals) without generating inconsistent
results. Decontamination of multipath signals from a single
additional scatterer was introduced in [19] and [20], with the
definite understanding that this is a very limited case. More
substantial multipath has the added benefit that if it can be cor-
rectly characterized, it can provide additional illumination for
obstructed targets. When the multipath-generating scatterers
are known, a filtered backprojection approach can be effective
[21], [22], [23].

Our approach addresses some of the less-exercised aspects
of the opportunistic sensing problem, by embracing both
uncertainty (in locations and configuration of sources and
receivers), and by exploiting multipath indirectly. Our methods
consider the mapping from receiver location to the vector
of signals received from each transmitter at these locations.
When this mapping preserves the topology of the environment,
it remains to interrogate the image of the mapping under
sufficient sampling. Since the image lies in a (potentially)
high dimensional signal space, the interrogation process can
be thought of as a dimension reduction problem.

Indeed, estimation of the dimension [24], [25] of the envi-
ronment from this kind of signal space mapping is an inter-
esting problem, though it appears that there is no treatment of
our particular mapping in the literature. Once the dimension
is known, a number of algorithms related to nonlinear com-
pressive sensing [26], [27], [28], [29], [30], [31] play a useful
role in our analysis. In particular, they suggest that a random
projection of the data to the appropriate dimension can result
in an accurate geometric picture of the signal space. These
kind of results are reminiscent of the Nash embedding theorem
[32]. However, it is worth cautioning the reader that geometric
information may be irreversibly lost depending on the sensing
modality. In this case, an approach like that of [33] permits
detection of certain features without complete recovery of the
environment.

Our approach differs from the methods discussed previously
in several important ways:

1) Our emphasis is on recovering topological features of
the environment via signals of opportunity. To this end,
we validate the experimental results presented in this
article by computing topological invariants (persistent
homology [34], [35]) of the domain as represented in the
signal space and comparing them against ground truth.

2) We do not expect source or receiver locations to be
known, and so focus on algorithms that are specifically
non-coherent. As a benefit, algorithms developed in this
framework (such as [36]) will be capable of working
against poorer quality data than otherwise tolerable.

3) Our methods are robust with respect to discontinuities
in received signals (near the minimum detectible signal
levels) and also with respect to multipath contamination
of the received signals.

4) Our framework addresses a wide array of known sensor
modalities, such as those based on signal strength, time
difference of arrival, direction of arrival, and more;
mixed modalities are fully supported.
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Finally, we address concerns about the feasibility of our
approach by presenting experimental results that validate our
signal model and the correctness of the resulting signal space
embeddings.

II. SIGNALS AND SIGNAL PROFILES

In this section, we work in a continuum limit that permits a
receiver to be located at any point in space: we will later
sample this continuum by a network of fixed (or perhaps
mobile) receivers in our discussion of our experimental re-
sults in §VI. All receivers reside in a compact domain D
which is a manifold with boundary and (perhaps) corners
(see Appendix for definitions from differential topology). It
is common to visualize D as the physical workspace in which
the transmitters and receivers reside, but this is not strictly
necessary. For example, receivers with directional bias can be
topologized as a space of cones in a tangent bundle; or, in the
case where mobile receivers travel through a domain A C R?,
the appropriate D may be the product D = A x [0,T] with
the time interval.

A. Spaces and signals

Received signals vary greatly. Among the most common
received signal types are:

1) TOA: Time of arrival;

2) TDOA: Time difference of arrival;

3) DOA: Direction of arrival;

4) Strength: Strength of signal;

5) Doppler: Frequency difference of arrival.

The last item, doppler, requires that the transmitters and
receivers are in motion relative to each other.

Having fixed the receiver domain D as a topological man-
ifold in which receivers may be located, the next step is to
topologize the set of possible signals, both transmitted and
received, into signal spaces. In the simplest case (e.g., TOA
with infinite signal propagation), a single received signal is
a mapping D — R which records the time-of-arrival of the
transmitted signal to a point x € D. More generally, a signal
may take values in a manifold, such as S! = R/Z, as in
the case of DOA in the plane, or RY in the case of N + 1
transmitted signals under TDOA. Manifolds with corners or
singularities are also possible, as in the case of TOA from
multiple indistinguishable transmitters; the received signals
lie in the polyhedral quotient of R™ by the action of the
symmetric group Sy.

Consider, therefore, each transmitter to have an associated
signals space S;. We encode limited signal range by means of
a distinguished disjoint failstate basepoint L which connotes
failure to receive this signal. For example, the TOA signal
space for N finite-range transmitters would be S; = RU_L with
the full signals space being the cross product S = (R 1)¥;
an element of this space is an ordered N-tuple of times-of-
arrival of the N identified signals, with | meaning that the
signal either failed to arrive or was of insufficient SNR. The
topology on R LI | is, as implied, disjoint union.

B. The transmission and signal profiles

The connection between the receiver domain D and the
spaces of signals induced by signal transmission and reception
takes the form of mappings. We differentiate between the
transmitted signals readable by a receiver and the information
that a receiver retains, perhaps after signal modulation. For
example, in TDOA, individual transmitter signals are detected
by the receiver; however, only the time-difference between
incoming signals is retained as received signal data. We encode
this difference of readable and retained signals by means of
a quotient map ¢ : S — R between the space of transmitted
signals S and received or retained signals R. A receiver at
a point in D receives a transmission signal by means of a
transmission profile map 7 : D — S and an induced received
signal profile map P : D — R, where P =P o 7.

D—T58 =[L(SiuUL) : (1)

RN

R

C. Assumptions

For the remainder of the paper, we enforce the following
axiomatic characterization of signal profiles:

1) D is a manifold with boundary and corners.

2) Each transmitter emits a signal which is reliably readable
by a receiver in D on a STABLE DOMAIN U; C D, a
compact codimension-0 submanifold with corners.

3) Each transmitter determines a smooth TRANSMISSION
MAP 7; € C*(U,,S;) taking values in a TRANSMIS-
SION SIGNAL SPACE S;.

4) Each transmission map extends to 7; : D — S; U L and
evaluates to L on points outside of Uj.

5) The individual signal maps assemble into the TRANS-
MISSION PROFILE, the map 7 : D — & = [[,(S; U L)
given by the product of the 7; maps.

6) The SIGNAL PROFILE P : D — R is the postcomposi-
tion of the transmission profile P with a quotient map
®: S — R, where R is a disjoint union of manifolds
and ® is a submersion (the derivative d® is onto at each
point of S).

As an example, for TDOA with infinite broadcast range
(U; = D for 1 < ¢ < N), the quotient map ® from the
transmission signal space S = R to the received time-
difference space R = RV ~! is a linear projection map (time-
difference) with d® of constant rank N — 1 everywhere.

III. THE SIGNALS EMBEDDING THEOREM

We demonstrate that for sufficiently many generic trans-
mission signals, each point in D has a unique signal profile.
The critical resource is the number (and dimension) of signals
received relative to dim D. The collection of stable domains
for the transmitters is denoted % = {U; }2¥. It will be assumed
that % is a cover for D, meaning that the union of the interiors
of the U; sets contains D. We characterize the amount of
information needed to uniquely localize receivers via signals
in terms of a depth of the collection of stable domains % .
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Definition 1. Given a domain D and a cover % of D by sets
% = {U,}, the DEPTH of the cover, dep %, is the minimal
n € N such that every point « € D lies in at least n distinct
elements of %/.

Definition 2. Given P : D — R, consider the localization 7,
of 7 taking a neighborhood of = € D to only those signals S;
for which x lies in the interior of U;. Define P, = ® o7, and
declare the P-weighted depth P-WEIGHTED DEPTH dep P of
the cover % is defined as the minimal rank of the derivatives
dP, at x over all x:

dep P = min {rank dP, > n Vx € D}. 2)

The received signal profile P may or may not be injec-
tive. When it is not, receivers at different locations record
identical signals. It may be the case that such ambiguity is an
extreme coincidence, and a small perturbation to the individual
signals removes the ambiguity in . On the other hand, non-
uniqueness of signal profiles may be a persistent feature of the
environment: although a perturbation may alter signal values
at two specific receiver locations, nearby receiver locations
will, after the perturbation, become identified. Our principal
result specifies the degree of possible ambiguity.

Theorem 3 (Signals Embedding Theorem). Let P : D — R
be a received signal profile with stable domains % = {U;}
satisfying the assumptions of §1I-C. For generic transmitters —
specifically, for individual transmission signal maps T; open
and dense in C>*(U;,S;) — the set of points in D on which
‘P is non-injective is of dimension

dim {z € D: P(z) = P(y) for some y # x}
< 2dim D — dep P.

Proof: Begin with the following assumptions: (1) all
transmissions are of unbounded extent (U; = D for all 1),
so that S = [, S;; and (2) the quotient map @ is the identity,
so that P : D — R = S. In this case, the signal profile P :
D — R is globally smooth and dep P = dim S. The result
flows from the following version of the Whitney Embedding
Theorem. A generic perturbation of the transmission signal
maps 7; is equivalent to a generic perturbation of the received
signal profile P, since the topologies on C*°(D, ], S;) and
Hjlv C*(D,S;) are equivalent [37]. Consider the configura-
tion space,

C*’P=DxD-Ap

Ap ={(z,y) eDxD : x =y}
of two distinct points on D. This is a manifold (with corners,
as per D) of dimension 2dim D. The graph of the signal
profile P induces a map on the configuration space:

C*P:C*D - C*DxSxS

sz, y) e (2, P(2), Py).

The set of points on which P is non-injective is precisely
(C?P)~L(C?*D x As), where As C S x S is the diagonal.
According to the multi-jet transversality theorem , cf. [38,

Thm. 4.13], generic perturbations of P induce generic pertur-
bations of C?P (since C2P is the 2-fold O-jet of ). Thus, from

transversality and the inverse mapping theorem, the generic
dimension of the non-injective set equals:

dim C?D + dim C?*D x Ag — dim C*D x S x S
=2dim D+ 2dim D+ dim § — (2dim D + 2dim S)
=2dim D —dim § = 2dim D — dep P.

The transversality theorems invoked — both the multi-jet
transversality and inverse mapping theorems — are usually
stated for maps between smooth manifolds without boundary;
however, they apply also in the case of a manifold with corners
[39]. For a compact domain D, as is here the case, the stronger
conclusion of open, dense instead of generic holds [38, Prop.
5.8]. This completes the proof for the case U; = D for all ¢
and ® =1Id.

Next, relax the assumptions on the quotient map ¢ : S — R
from being an identity to being a submersion — the derivative
d® is everywhere of full rank equal to dim R. Then, following
the initial case, we wish to perform perturbations in the trans-
mission signals C*°(D, U;), while controlling the injectivity
of ® o 7. The non-injective set of P equals the inverse image

(C*P) 1 (C*D x (@ x &) (AR)),

where Ag C R x R is the diagonal. As ® is a submersion,
the inverse image of Az under the product map ¢ x @ is of
dimension 2dim S — dim R. Thus, from transversality and
the inverse mapping theorem, the generic dimension of the
non-injective set equals:

=2dim D+ (2dim D + 2dim § —dim R)
—(2dim D + 2dim S)
=2dim D —dim R = 2dim D — dep P.

This completes the proof in the case of globally-received
signals U; = D.

Finally, we relax to limited range signals. Assume a tame
cover % = {U;}YV of D of stable domains for transmission
signal reception. The intersection lattice of % consists of
all nonempty intersections of elements of %/. Let ¥ denote
the collection of closures of the elements of this intersection
lattice: by tameness, ¥ is again a finite cover of D by
compact codimension-0 submanifolds of D with corners. For
convenience, use a multi-index J € {1}V for ¥ = {V;}
encoded so that

V; = closure <

N un N (D—Uk)>.
Ji=+1 Jp=—1
On each (nonempty) Vj, restricting 7 to the positive-J
coordinates and ignoring the L states on the remaining coor-
dinates yields a smooth map 7; : V; — [] 7,=11 Si- Further
restriction of ® yields a P; : V; — R, that is a map
between smooth manifolds. By assumption on the P-weighted
depth, the rank of dP; (restricted to the interior) is at least
dep P. Thus, as per the previous case, for an open dense set of
transmission signal maps, the dimension of the non-injective
set of P; is bounded above by 2dim D — dep P. Repeating
the argument for each multi-index J and taking the finite
intersection of the resulting open dense sets of transmission
signal maps completes the proof. [ ]
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IV. COROLLARIES

The Signals Embedding Theorem provides simple criteria
for the signal depth required to ensure a generic injection
into the received signals space. If the dimension of the self-
intersection set of P is negative, then P is one-to-one, and its
image in the received signals space R is a faithful image of
D, partitioned according to % .

A. Depth criteria for localization

In many instances, depth criteria for unique channel re-
sponse is a function of the depth of the cover % by stable
signal domains.

Corollary 4. A generic TOA, signal strength, or range signal
profile is injective whenever dep % > 2 dim D.

Proof: In the case of TOA, signal strength, or range recep-
tion, each signal space S; = R, ® = Id, and dep P = dep % .
From Theorem 3, the subset of D on which P is generically
non-injective is of negative dimension — hence empty —
when dep % > 2dim D. [ ]

This implies that a receiver can be localized to a unique
position in a planar domain D using only a sequence of five or
more locally stable TOA/strength/range readings from generic
transmitters. For TDOA, six signals are required to achieve
localization:

Corollary 5. A generic TDOA signal profile is injective
whenever dep % > 2dim D + 1.

Proof: Each S; = R and the reduction map ® : § — R is

a submersion of rank defect one; hence dep P = dep % — 1.
|

DOA has a more dramatic effect on required signal depths.

Corollary 6. A generic DOA signal profile is injective when-

ever o dim D
1im
dep % > —.
P dim D — 1
Proof: Each S; = S4mP—1 and & = Id. Thus, for
injectivity,

2dim D < dep P = (dep % )(dim SHmP—1),

3)

Remark 7. Note that Corollary 6 implies that

1) DOA localization is impossible when dim D = 1;

2) for a planar domain, there is no difference between DOA
and TOA in terms of signal cover depth required; and

3) for domains of dimension greater than three, the signal
depth required for DOA equals three, independent of
dimension.

B. Time-dependent systems

1) Pulses: Consider the setting in which transmitters and
receivers are collocated in a physical domain D, and the
transmitters are in motion over a time interval [0,7]. One
simple instantiation of this would be the following. Consider
a single transmitter which moves through D, emitting a pulse

signal intermittently over the time interval [0, T]. Each pulse
is audible over a stable domain U; and induces a signal in
S = (S; U L)V, where N is the number of pulses emitted
and all ¥; are the same (under TOA, TDOA, or DOA).
Assuming that perturbation of the motion of the transmitter
and the propagation of pulses induces a generic perturbation
of the transmission profile map 7 : D — S, Theorem 3 and
Corollaries 4-6 immediately translate to the case of a single
(mobile) transmitter sending multiple pulses.

2) Path-crossing: Other time-dependent settings are more
interesting. Consider the space-time product D =D’ x [0, T]
and the case of one or more transmitters in motion in D’.
Then, in the setting of TOA, TDOA, DOA, signal strength, or
range, one has a cover of D by stable patches U; delineating
where and when a signal is readable. By Theorem 3, the signal
profile map P : D’ x [0,T] — R is injective for dep(P) >
2(dim D’ +1). Note well that this localizes temporally as well
as spatially. This injectivity criterion has additional potential
utility. Assume that two mobile receivers move through the
domain D over the time interval [0, T'], but have no information
about their locations or relative distances. Did the receivers
ever cross paths?

Corollary 8. Two mobile receivers moving along paths
v1,72 : [0, T] — D intersect in D if and only if their images
in R under P intersect, assuming dep(P) > 2dim D.

Note that this applies to D a physical or a space-time
domain, allowing for determination of whether the receivers
covered the same territory at some times or whether the
receivers actually met. That such inference may be rigorously
concluded a posteriori within the received signal space R
seems novel. The reader may easily derive other similar
generalizations for inference via received signals.

3) Doppler: One last aspect of dynamic transmitter-
receiver systems involves sensing via doppler. In this case, re-
ceivers can measure both the range-to-transmitted (from TOA
plus synchronization) and the doppler shift in the received
signal. The doppler shift takes values in R, since there is an
increase in the received frequency for an approaching transmit-
ter and a decrease in the received frequency for a retreating
one. In the context of multiple transmitters, synchronization
across all platforms is difficult. As a result, it is more realistic
to measure TDOA plus doppler for the received signals. The
following corollary follows trivially.

Corollary 9. A generic TDOA-plus-doppler signal profile
localizes in time and space over a domain D whenever

dep % > dim D + 3/2. 4

Proof: Each §; = [0,00) x R and ® has rank defect one.
Thus, for injectivity,

2dim D+ 2 < dep P =2N — 1.

C. Anonymous transmissions

The following asserts that anonymization of transmitter
sources does not impact signal depth criteria.
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Proposition 10. For a signal profile in which all transmission
signals are of the same type (S; = X for all i) and the quotient
map to R is equivariant with respect to transmitter identities
(® is invariant under the action of the symmetric group Sy
on S), then passing from identified to unidentified transmitters
does not change the dimension bounds on the self-intersection
set in Theorem 3.

Proof: In our formulation, the transmission profile de-
mands signal identities, since 7 : D — [[,(XU.L). The action
of the symmetric group Sy : & — S permuting transmitter
identities descends by equivariance to an action Sy : R — R.
The quotient R — R /Sy is not a submersion, as the action
of Sy is not free, as in the case of two signals arriving at
the same time, in which the non-identity permutation of the
transmitter identities is a fixed point. However, the action of
S is free (and therefore has derivative of full rank) on a dense
codimension-0 submanifold (the complement of the ®-image
of the pairwise diagonal in X*). The dimension bounds in
the proof of Theorem 3 are sensitive only to top-dimensional
phenomena; thus, dep P remains unchanged after quotienting
by the S action. [ |

D. Multi-modal sensing and fusion

Since genericity can be decoupled to each of the trans-
mission functions independently, there is no reason why each
should represent the same kind of signal modality. In contrast
to some of the examples in the previous sections, we could
well consider a heterogeneous family of transmitters. For
instance, consider the situation where there are /N transmitters
for whom the receivers can detect signal strength only, but
there are M for which signal strength and doppler can be
measured. In this case, S = (R U L)V x (R? u 1)M,
which leads to dep P = N + 2M. A consequence of
this situation is that one can imagine design constraints that
balance the availability of inexpensive transmitters with more
expensive (but more capable) transmitters. The reader may
easily generalize.

E. Configuration spaces

There is no reason why D must conform to a physical
or even physical-temporal locus of receivers. Consider the
dual setting in which N receivers are fixed at locations in
a physical domain X (a compact manifold with corners). A
collection of M transmitters operate at distinct locations in
X. The parameter space (to be embedded in a signals space)
is the space of configurations of the M (labeled) transmitters,
CM(X) = XM — Ay, where Ax = {z; = x; for some
i# j}. Let D = CM(X), where, to ensure compactness, one
removes a sufficiently small open neighborhood of the pair-
wise diagonal Ax. For simplicity, consider the restricted case
where all N receivers can hear all M transmitters, and that the
received signals are scalar-valued, as in TOA/strength/range
settings. The following result uses Theorem 3 to derive the
existence of triangulation-without-distance algorithms: one can
triangulate position based on a non-isotropic signal without
knowledge of locations or actual distance.

Corollary 11. Under the above assumptions, the transmitter
positions are unambiguous for N > 2dimX, independent of
M.

Proof: From Theorem 3, the criterion is:
2M dim X = 2dim(CM(X)) < dim S = MN.

|
In particular, for a planar domain, the positions of the
transmitters is uniquely encoded in signal space by five fixed
receivers, independent of the number of (audible) transmitters,
providing a dual to Corollary 4. Five exceeds the three
needed for triangulation of position via geometry: for weaker
topological signals, more data is required. We leave it to the
reader to work out the appropriate statements for localizing
transmitters uniquely when the signals have only partial extent
or operate under different modalities than range/TOA/strength
or the receiver/transmitter identities are anonymous.

FE Design spaces

Theorem 3 can be applied to settings that go well be-
yond the motivating scenario of receivers localizing based
on transmission signals. Consider the following (idealized)
setting. A dish antenna is characterized by a small collection of
parameters: radius of curvatures in principal directions of the
reflector, principal diameters of the reflector, and the location
and orientation of feed. As a result, each dish antenna’s
space of possible designs is a manifold of dimension 10. Of
course, many other possible design spaces are possible, and
the idea readily handles other antenna configurations, such as
electrically-scanned phased arrays.

In this setting, we therefore let D correspond to the de-
sign space for the antenna. As before, D will be a finite-
dimensional manifold, perhaps with boundary or corners. The
boundaries and corners of D correspond to the imposition of
design rules and constraints that are common to the kind of
antenna under examination.

The mapping 7 : D — S is given by the placement
of N receivers at fixed points in the propagation field. For
R-valued reception signals and globally stable transmissions,
S = RY = R and the Signals Embedding Theorem declares
how many readings of the antenna are required to unambigu-
ously determine its design parameters.

It should be noted that in this case, each of the transmission
functions 7; are not independent. Changing any portion of the
antenna’s design will generally result in a modification of all
of the 7; in a possibly complicated fashion. It is therefore
unnecessary to consider perturbing each independently, so
one could use the standard Whitney embedding theorem for
manifolds with corners instead.

Corollary 12. For D the finite-dimensional design space
(manifold with corners) of an antenna, the antenna charac-
teristics are uniquely determined by sampling at N generic
points in the propagation domain, where N > 2dim D.

In the case of more complicated antennas, for instance
electrically scanned phased arrays, we remind the reader that
dim D may be quite large. This is a reflection of the fact
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that the elemental excitations and element patterns may be
unknown, and therefore introduced as parameters in D. This
causes no theoretical problem, but collection of sufficient data
may present a challenge. This is actually rather striking as the
usual approach to measuring phased arrays requires C-valued
measurements to be taken. Although the approach outlined
here requires the same amount of data (possibly in more
measurements), there is no requirement on the format of the
data.

It should also be noted that Corollary 12 presents a highly
efficient way to measure antenna radiation patterns. Rather
than sampling the entire antenna pattern, which can be ex-
tremely time-consuming, one need only sample enough to
measure the antenna’s design in D. From this solution, the
remainder of the antenna’s pattern can be predicted including
where it has not been directly measured.

V. QUANTIZATION

Discretized signals would seem to promise effective local-
ization. However, a straightforward application of Theorem
3 fails: using a quotient map ® from S to a finite set (of
dimension zero) yields a P-weighted depth dep P = 0.
Clearly, a quantized signal profile cannot be injective; however,
if the quantization is fine enough, quantized signals should
distinguish points in D up to some small distance. We begin
by specifying a geometry on S: suppose that each S; is a
Riemannian manifold, with induced metric d;. The metric
on S is the product metric on the d;, with the (intrinsic)
convention that d takes on the value oo if the points are
in distinct connected components of S. Furthermore, R is
likewise assumed to have Riemannian metrics on components.
The following compactness result indicates the feasibility of
metric quantization.

Proposition 13. Let P : D — R be a received signal profile
with stable domains % = {U;}}V satisfying the assumptions
of §II-C, with, in addition: (1) S and R are Riemannian
on connected components; and (2) dep P > 2dim D. For
individual transmission signal maps T; open and dense in
C>(U;,S;), and for € > 0 small, there exists a constant
K (€) > 0 such that:

diam P~ (Bc(P(z))) < K(e)
uniformly in x € D, with lim,_ g+ K(e) = 0.

Proof: Recall from the proof of Theorem 3 the cover ¥ =
{Vs} of D by compact closures of the intersection lattice of the
stable sets %. From the hypothesis on dep P, the restriction
of P to each V; (with the canonical extension to any added
boundary components) is a smooth embedding of V; onto its
image. Smoothness and compactness yields a function K ;(¢)
bounding the diameters of preimages of the restriction. As ¥
is finite, there is a uniform K (e) for which the result holds.

|

This result indicates that a quantization on the received

signals space yields an ambiguity in the domain D of bounded

size; this in itself is suboptimal, since the bounds might be
poor.

Fig. 1. Acoustic sounders were constructed to be transmitters in experiments.

VI. EXPERIMENTAL VALIDATION

To compensate for lack of hard bounds on quantization am-
biguity, and to test the applicability of the Signals Embedding
Theorem, we constructed a simple experiment with acoustical
sounders. The platform-independence of Theorem 3 gives
considerable freedom in selecting the transmitted waveforms
and the construction of the experiment. Since we focus on the
topological characterization of a propagation domain in this
article, we conducted an experiment to demonstrate:

1) The correctness of our our axoimatic characterization of
the signal profile;

2) That the condition number of the resulting signal profile
is positive, which validates the feasibility of our theory,
and furthermore;

3) That it is possible to detect a change in the homotopy
type of the domain by means of the signal profile
measured at a collection of receiver locations.

Several transmitters were constructed (see Figure 1) from a
PIC16F88 microcontroller, a simple audio pre-amplifier, and a
speaker. The microcontroller runs custom firmware that causes
the sounder to emit square waves with arbitrary transition
times. For the experiments discussed here, the transmitters
were commanded to emit chirped pulses in the range of SkHz-
10kHz. Signal reception was accomplished by the use of a
standard laptop computer sound card. The computer ran a
custom real-time matched filter bank (using the GStreamer
multimedia framework) tuned to each of the transmitters.
When triggered by the user, the computer stores the magnitude
of each matched filter tap in a datafile for later processing.

The experiment was conducted on a laboratory floor cleared
of acoustically reflective obstacles in the immediate vicinity.
Scatterers were present outside of the experimental area,
resulting in potential multipath returns. For each run of the
experiment, transmitters were placed at fixed locations (labeled
1-4), and the receiver was raster-scanned throughout the ex-
perimental domain (avoiding any obstacles) with a spacing of
3 inches between samples. For two of the runs, an acoustically
opaque obstacle (a stack of books) was placed within the
experimental volume. See Figure 2 for details of the layout
and Table I for a listing of the experimental runs. Runs B and
C collectively consider the case where there is an obstacle in
the domain (and so the domain is an annulus), while D and E
address the case when the domain is contractible.
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Fig. 2. Spatial layout of the experiment.

TABLE 1
LISTING OF EXPERIMENTAL RUNS.

Run | Obstacle | Transmitters | Comments

A No 1,2 Calibration run (not shown)
B Yes 1,3 Experimental collection
C Yes 2,4 Experimental collection
D No 1,3 Experimental collection
E No 2,4 Experimental collection

A. Validation of signal model

The received signal levels corresponding to each transmitter
are displaced in Figure 3, which incorporates a choice of
signal level threshold (independently for each transmitter) to
simulate the failure of reception and some spatial filtering
to compensate for receiver instability. It is immediately clear
from these plots that there is a stable domain containing each
transmitter, and that away from this domain the reception
becomes erratic before dropping out completely. We regard
this as a validation of assumption (2) of the signal profile.

Given the experimentally collected data, it is straightforward
to infer properties of the signal profile. In this experiment, the
quantized signal profile was injective, in that each receiver
location had a unique response to the set of transmitters. Given
the potentially large dynamic range of the data, we found that
18 dB of signal-to-noise ratio was required to ensure that the
resulting quantized signal profile remains injective. Figure 4
shows the lowest signal-to-noise ratio required to maintain
injectivity at a given receiver location, and indicates that this is
fairly stable over the domain with an average value of roughly
15 dB for both sets of runs.

The maximal depth of the cover in this experiment is
three, which is below the required (five) for guaranteed signal
profile injectivity. However, even this appears to suffice for
the purposes of detecting the difference in topological type
of the domains used in runs B,C versus D,E. To see this,
first consider the projection of the data into two dimensions
given in Figure 5. As indicated by the compressive sensing
literature, a random projection ought to result in a reasonably
accurate picture of the environment embedded in the signal
space, but the dimension of the signal space is too low for the
asymptotic results to be of much use. Using the formulae in
[28] with the appropriate values from the experiment results
in a likelihood of about 10% that a random projection will be
sufficiently close to an isometry to be topologically accurate.

Fig. 3. Thresholded signal levels from each transmitter as a function of
position. The top four frames represent runs B,C. Missing portions of the
data correspond to the presence of the obstacle.
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Fig. 4.  Signal-to-noise ratio required to maintain injectivity of the signal
profile at a given receiver location in runs B,C (left) and runs D,E (right)

Fig. 5. Projection of received signal levels at each receiver. The data from
runs D,E (right) have been randomly downsampled to match the number of
points in runs B,C (left). The marked path tightly bounds the obstacle, when
it is present.
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Experiment BC: Dimension 0

Experiment BC: Dimension 1

Experiment DE: Dimension 0

Experiment DE: Dimension 1

Fig. 6.  Persistent homology barcodes of the two collection runs. The
horizontal axis represents signal level in dB.

Evidently the projection in Figure 5 is far from random.
Instead, we have plotted a particularly illuminating projection.
In this projection, one observes that the image of the domain
through the signal profile seems correct.

This observation requires luck in choosing a projection:
a more objective measure of validity is desirable. Recently,
PERSISTENT HOMOLOGY has emerged as an effective tool for
examining the topology of point clouds sampled from a topo-
logical space [34], [35]. This algebraic method discriminates
between a contractible planar domain and one punctured by
obstacles. In particular, the presence of a persistent generator
of homology in dimension one (/1;) indicates the presence
of an obstacle. We computed this persistent homology using
JPlex [40]; its signature, or BARCODE, is shown in Figure 6.
It is immediately clear that both runs came from connected
domains (since there is one dimension 0 that persists for almost
all scales). There are some persistent generators in dimension 1
for both sets of runs, but there is only one substantial generator
in experiments B and C that persists in excess of 0.5 dB.
This indicates the strong possibility of the presence of a 1-
dimensional hole in the domain for the case of runs B and
C and not in runs D and E. Hence, we conclude that the
experiment has detected a topological change in the domain,
and in particular identifies the presence of one obstacle in runs
B and C and no obstacles in D and E.

VII. CONCLUSION

This paper builds a general theoretical framework in which
to analyze signals of opportunity and utilize such to character-
ize a domain in terms of a representation into the appropriate
space of signals. Of note in our approach are the following
features:

1) Instead of trying to reconstruct coordinates within the
domain, it can be effective and profitable to work
completely within the space of signals. Given sufficient
control over the signal profile depth, this representa-

tion is faithful, modulo the discontinuities induced by
limited-extent signals.

2) One advantage of working within a space of signals
is the independence of the signal type. The topological
approach reveals that dimension is the critical resource
for faithful representation.

3) Although the differential-topological tools used assume
a high degree of regularity and ignore noise and other
inescapable system features, the robustness of the results
to quantization — as verified in theory, simulation, and
experiment — argues for wide applicability.
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APPENDIX

A DIFFERENTIAL n-MANIFOLD is a paracompact Hausdorff
space M with an open covering % = {U,} and maps ¢, :
U, — R™ which are homeomorphisms onto their images and
for which the restriction of ¢g¢ ! to U,NUg is a smooth (C™>
for our purposes) diffeomorphism whenever U, NUs # (. One
says that an n-manifold is MODELED on R" via CHARTS U,
in an ATLAS %/. An n-manifold with BOUNDARY is a space
locally modeled on R™ or the upper halfspace RT x R"~1,
depending on the chart. An n-manifold with CORNERS allows
a choice of any (RT)* x R"* as local models.

To each point p in a manifold M is associated a TANGENT
SPACE, T,,M, a R-vector space of dimension dim M that
records tangent data at p. The collection of tangent spaces fit
together into a TANGENT BUNDLE, a manifold 7, M, defined
locally as charts of M crossed with R4™M  Maps between
manifolds are said to be smooth if the restriction of the map
to charts yields smooth maps between charts. Such maps
f + M — N induce a DERIVATIVE Df : .M — T.N
defined on charts via the Jacobian derivative. The JET BUN-
DLE J"(M,N) is the manifold which records all degree r
Taylor polynomials associated to maps in C" (M, N), with the
topology inherited from M (source points), N (target points),
and the usual topology on real coefficients of polynomials.
We use C'°° smoothness in this paper, and place the usual
(Whitney) C*° topology on the space C°°(M, N) of smooth
maps from M to N: a C* neighborhood of f : M — N has
basis functions g whose r-jets are close, as measured by the
topology on J" (M, N).

A subset A C X is RESIDUAL if it is the countable
intersection of open dense subsets of X. For BAIRE spaces,
like C*>°(M, N), residual sets are always dense. A property is
GENERIC (or holds generically) with respect to a parameter
space if that property is true on a residual subset of the
parameter space.

Two submanifolds V, W in M are transverse, written V'
W, if and only if T,V & T,W =T,M forallpc VAW —
the tangent spaces to V' and W span that of M at intersections.
Note that the absence of intersection is automatically trans-
verse. A smooth map f : V' — M to a submanifold W C N if
and only if Df,(T,V) & (I,W) = T,M whenever f(v) = p.
The JET TRANSVERSALITY THEOREM states that for W a
submanifold of J"(M,N), the set of maps in C*>°(M, N)
whose r-jets are transverse to W is residual. This readily
yields the simpler transversality theorem that the subset of
C (M, N) transverse to a submanifold W C N is residual
(and, furthermore, open if W is closed).



