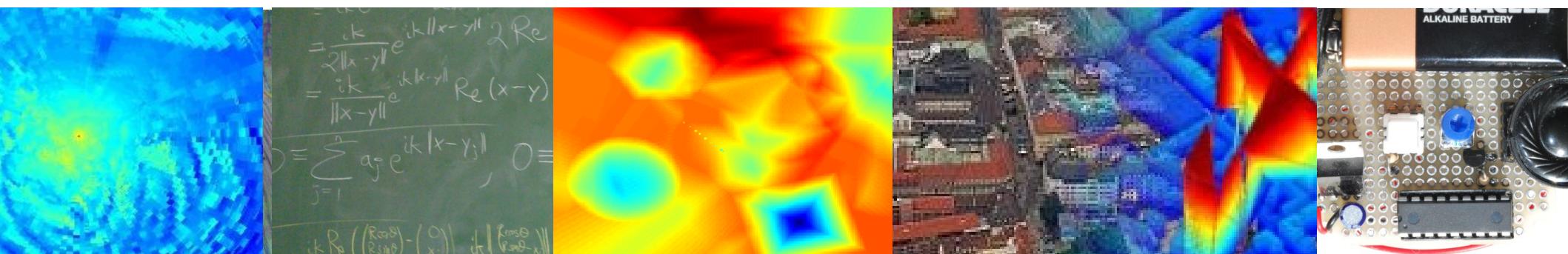


The Appearance *of* Stratified Spaces *in* Synthetic Aperture Sonar Collections



Michael Robinson

Acknowledgments

- Students:
 - Zander Memon (AU)
 - Harry Pham (AU)
 - Maxwell Gualtieri (Northwestern)
- Collaborator:
 - Brian DiZio (NUWC Newport)
- Data: ARL/PSU AirSAS and NUWC HFTAM
- Funding: Kyle Becker (ONR)
- Main references:

M. Robinson, Z. Memon, M. Gualtieri, "Topological and geometric characterization of synthetic aperture sonar collections." *Journal Acoustic Society of America*, 2025. <https://doi.org/10.1121/10.0037085>

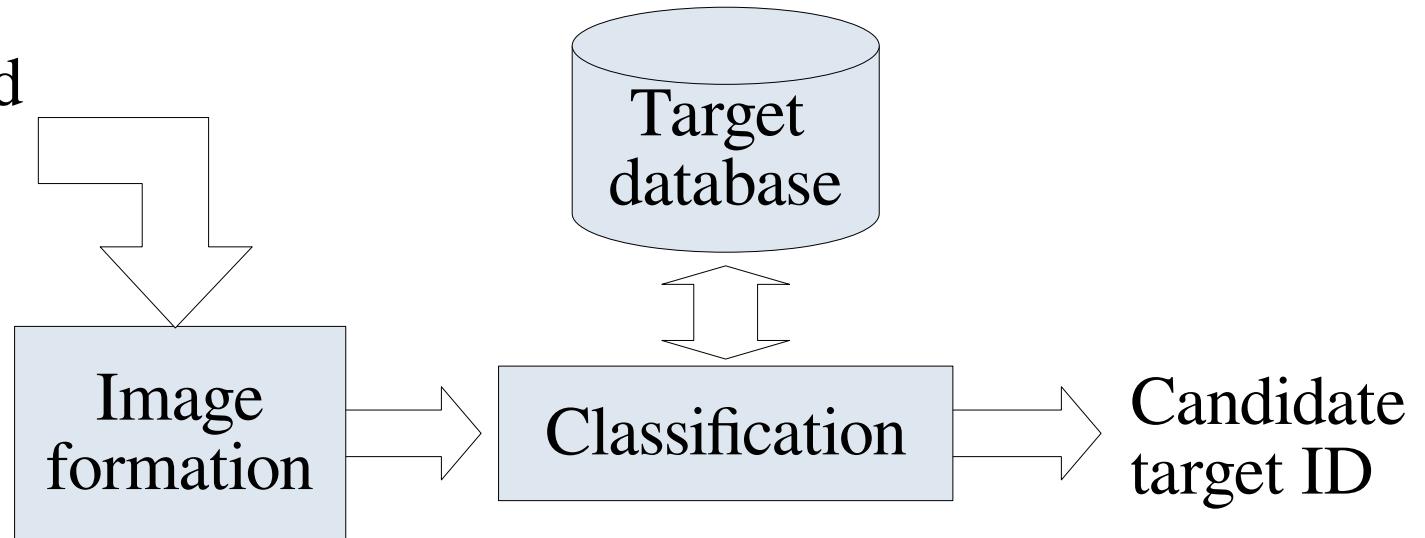
Z. Memon, M. Robinson, "The Topology of Circular Synthetic Aperture Sonar Targets." [arXiv:2205.11311](https://arxiv.org/abs/2205.11311)

Motivation

- Goal: Detect and identify objects on the seafloor using their active sonar signatures

Trajectory and propagation data

Echo data



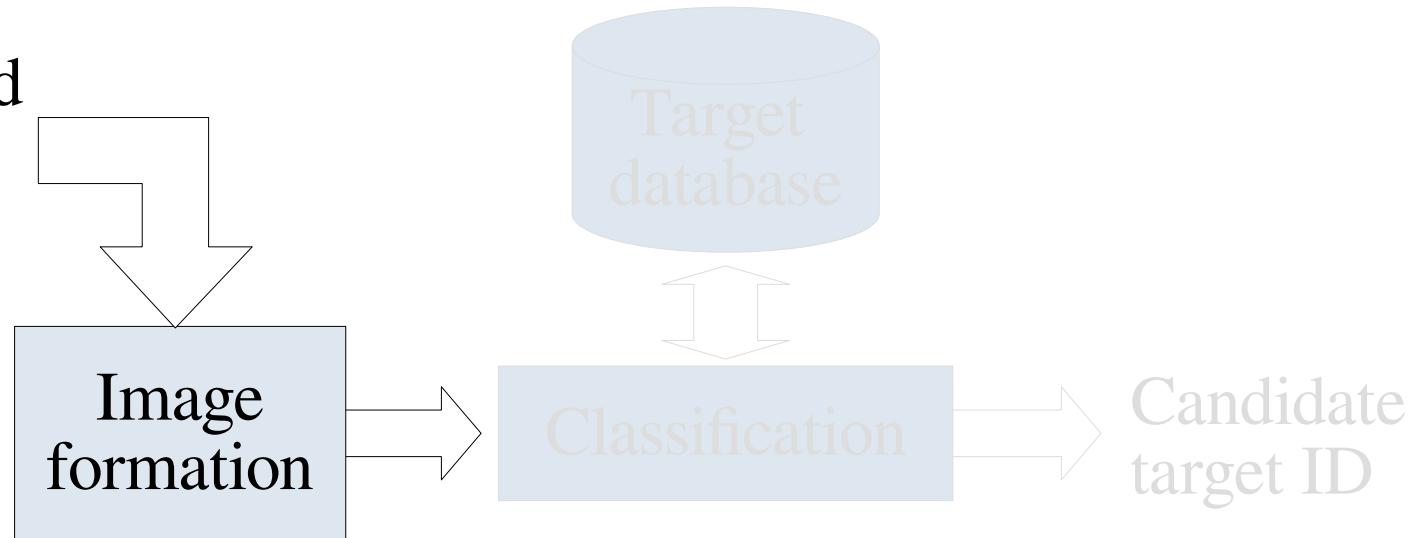
- Nearly all research, development, and fielded systems follow this common pipeline

Motivation

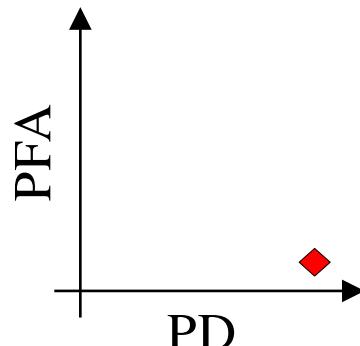
- Under tightly controlled conditions, sonar image quality is very good

Trajectory and propagation data

Echo data



Target detection performance is good
Focus, contrast, etc. good too

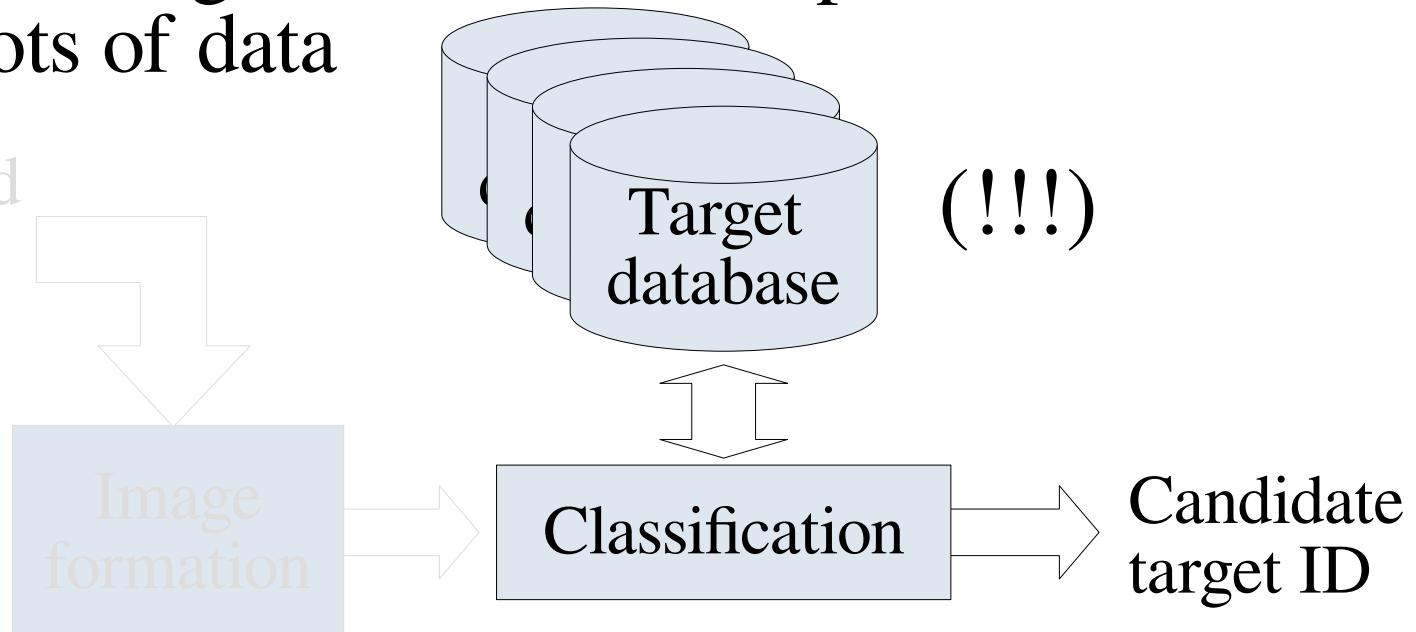


Motivation

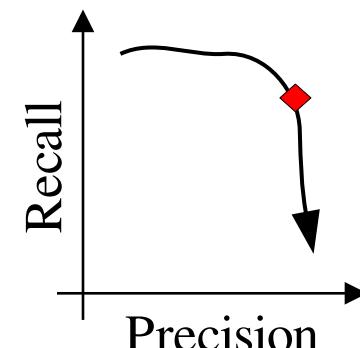
- Machine learning-based classifiers perform well if provided lots of data

Trajectory and propagation data

Echo data



(!!!)

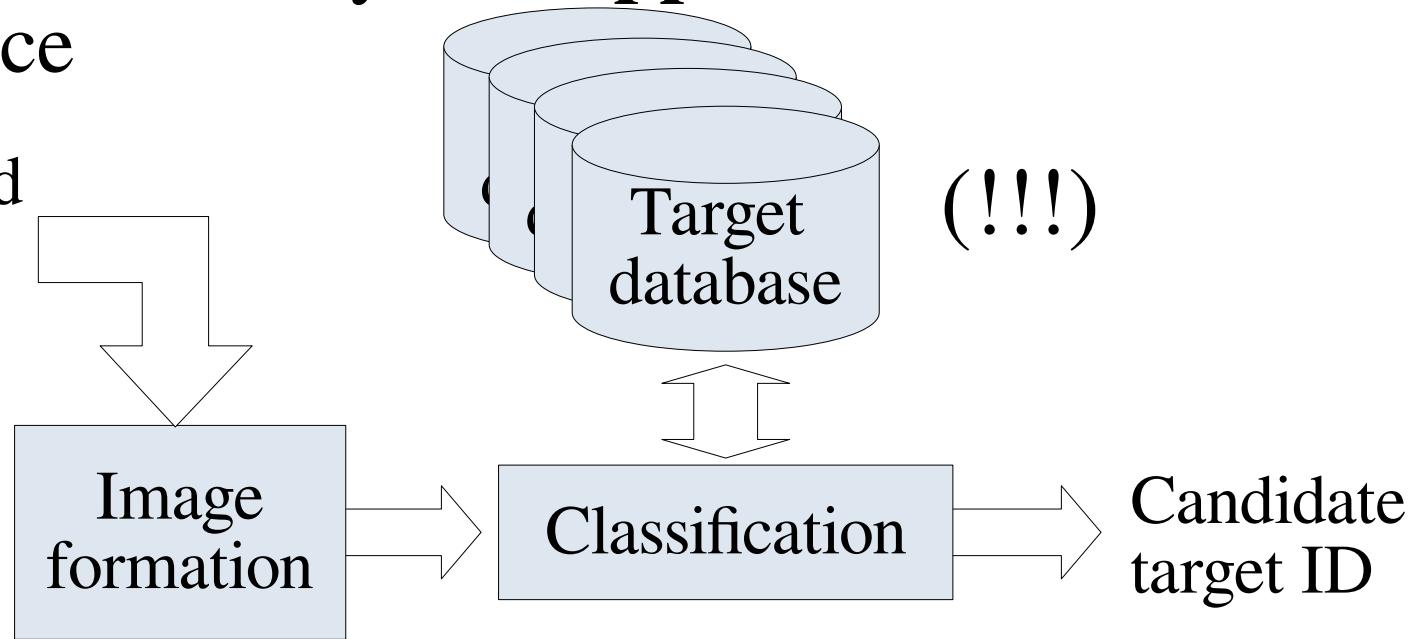


Motivation

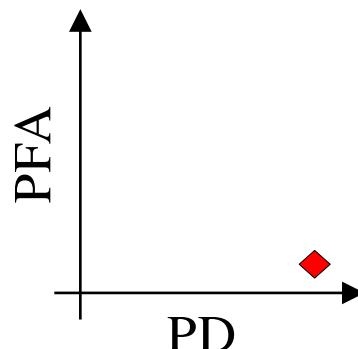
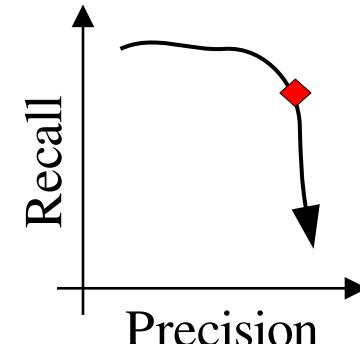
- Chaining these tools yields **upper bound** on overall performance

Trajectory and propagation data

Echo data



(!!!)

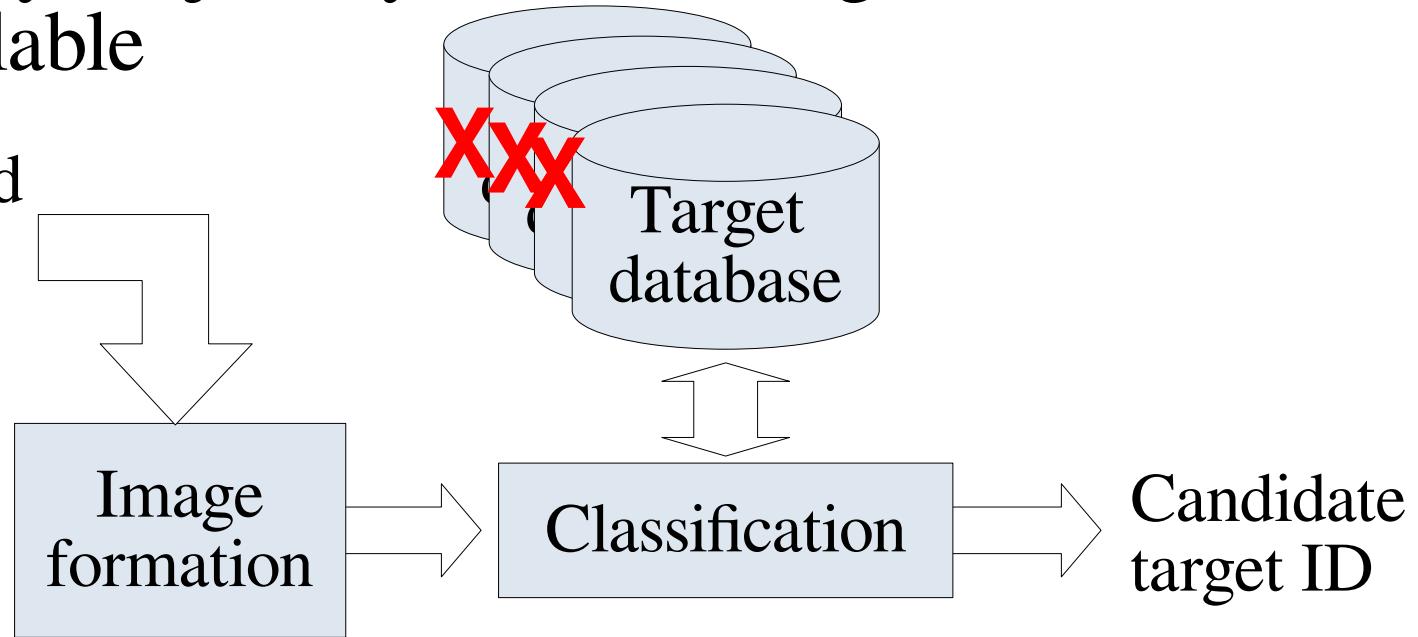
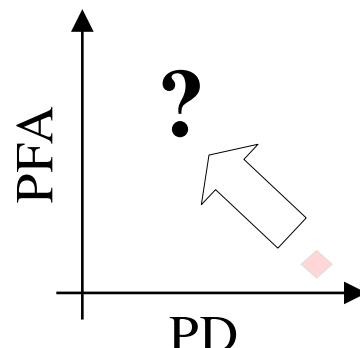
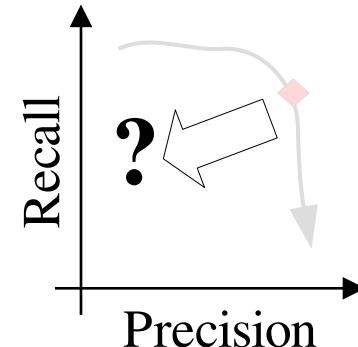


Motivation

- Realistically, trajectory won't be as good; vast training is not available

Trajectory and
~~propagation~~
data

Echo
data

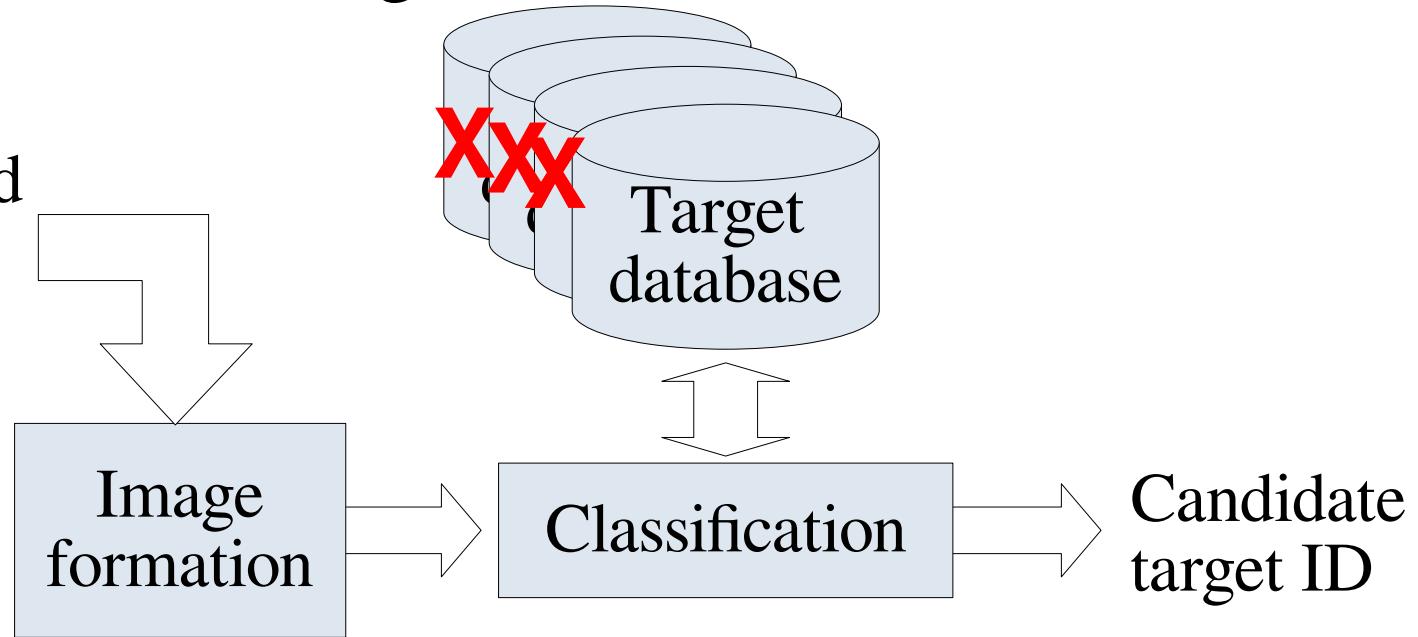
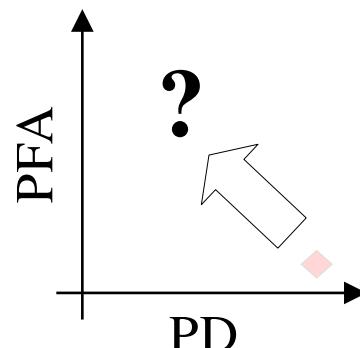
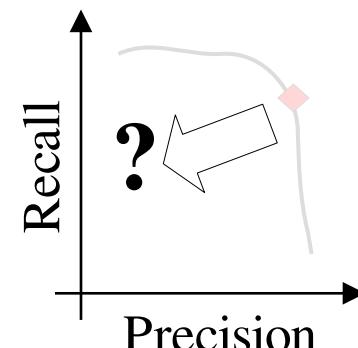


Motivation

- Question: What strategies remain in this case?

Trajectory and
~~propagation~~
data

Echo
data

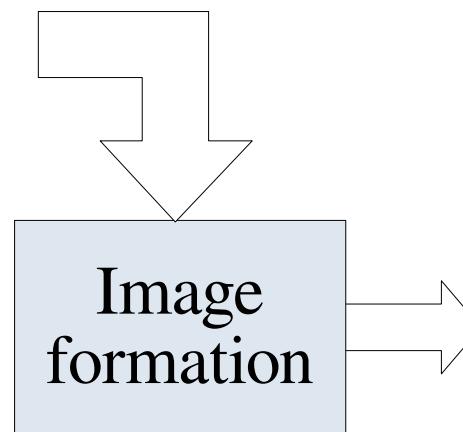
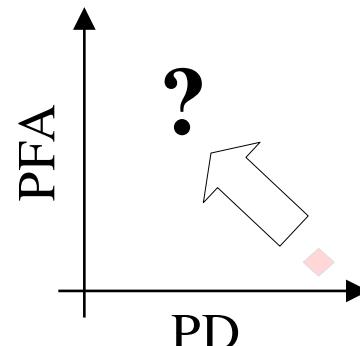


Motivation

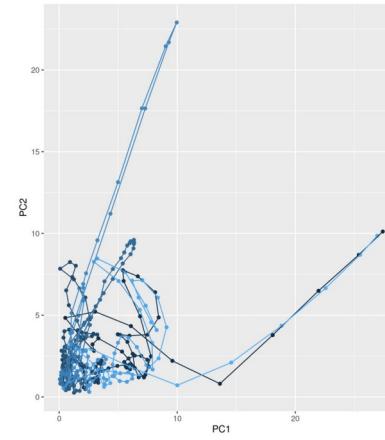
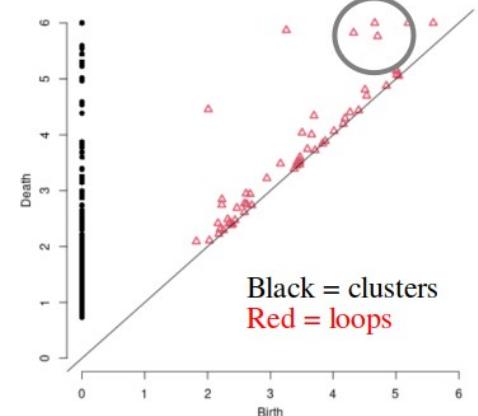
- Answer: Trajectory-invariant topological signal rep'ns

Trajectory and
~~propagation~~
data

Echo
data



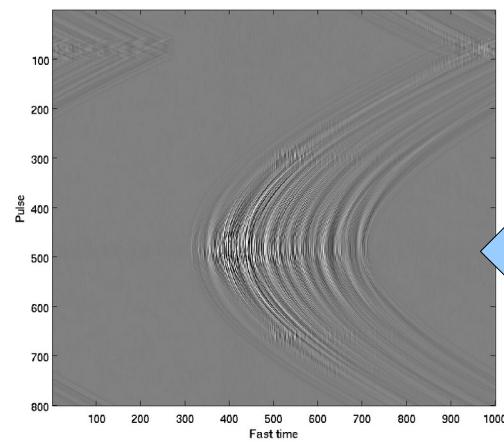
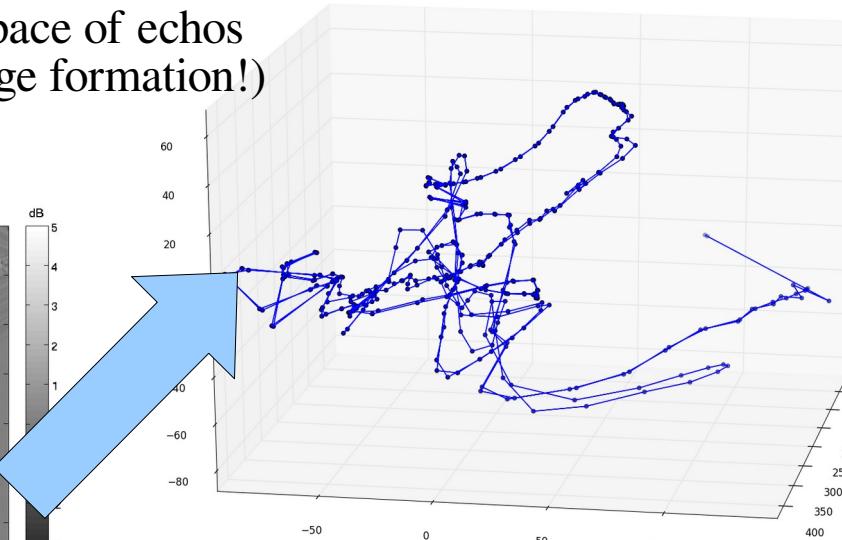
Topological
signature
features



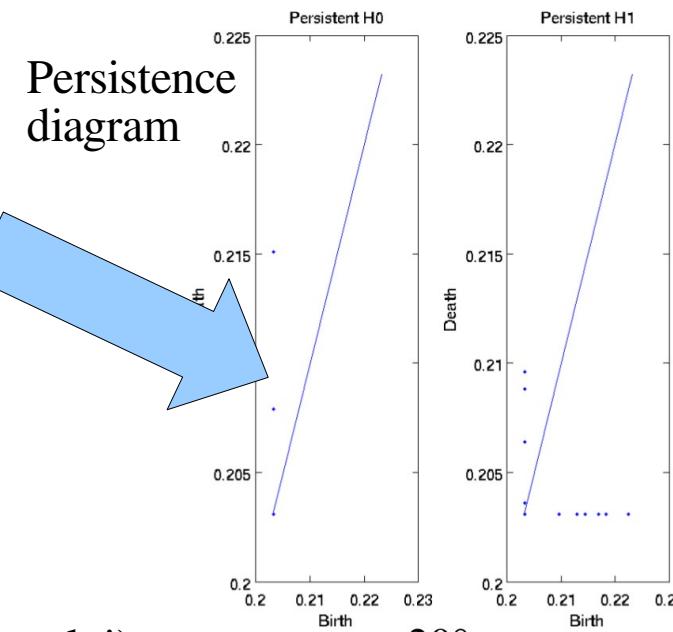
Initial insight: topological tools do work

Metric space of echos
(not image formation!)

Pulses



(Processed data is representative only!)



20°

Table of mean
misclassification
rates for various
metrics
(smaller is better)

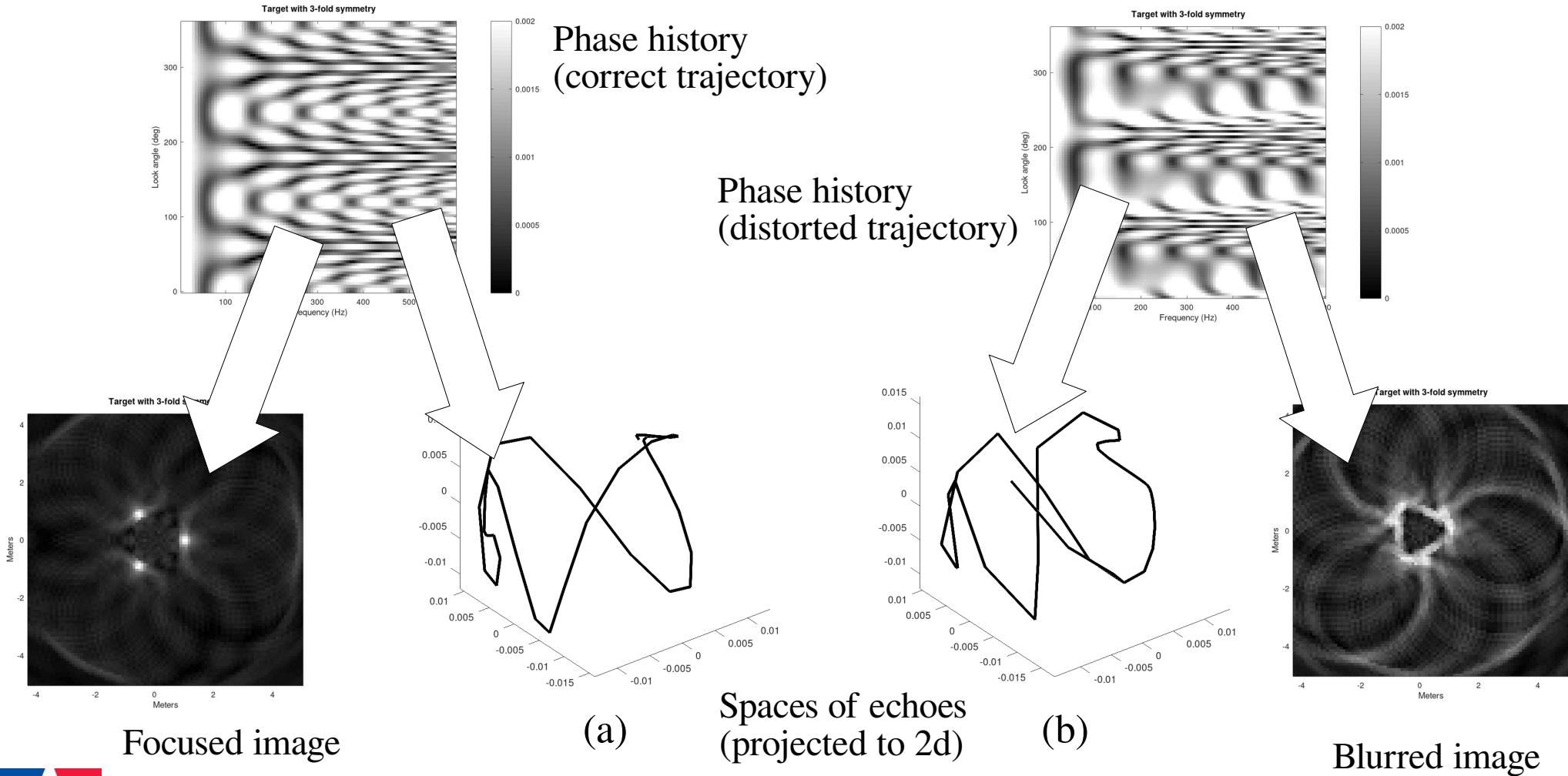
Metric	Target types	Target groups
Spectral L^2	4.32	2.32
Spectral corr.	3.58	2.19
Tucker [6, Fig. 5(b)]	2.15	1.57
H_0 with L^2	1.47	1.28
H_1 with L^2	2.49	1.70
H_0 with corr.	1.62	1.30
H_1 with corr.	2.38	1.57

Non-topological

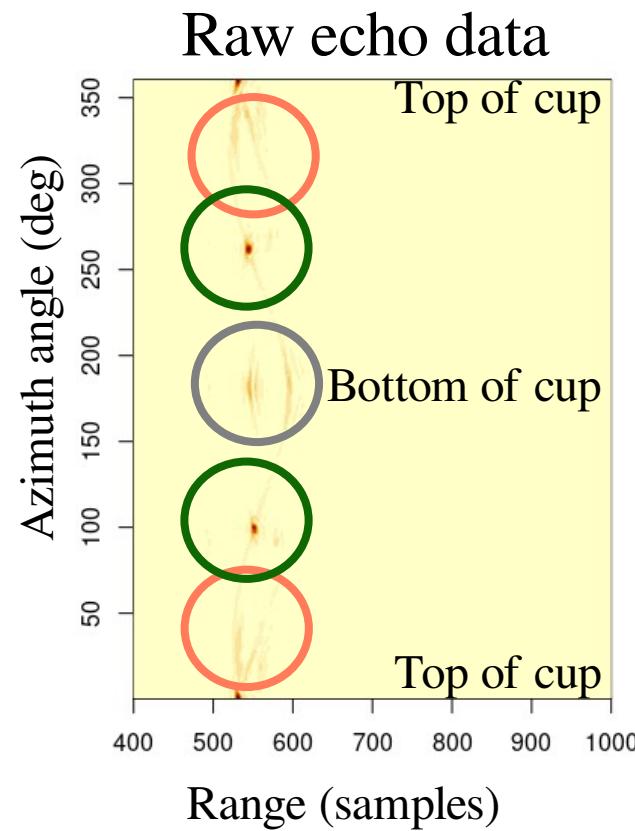
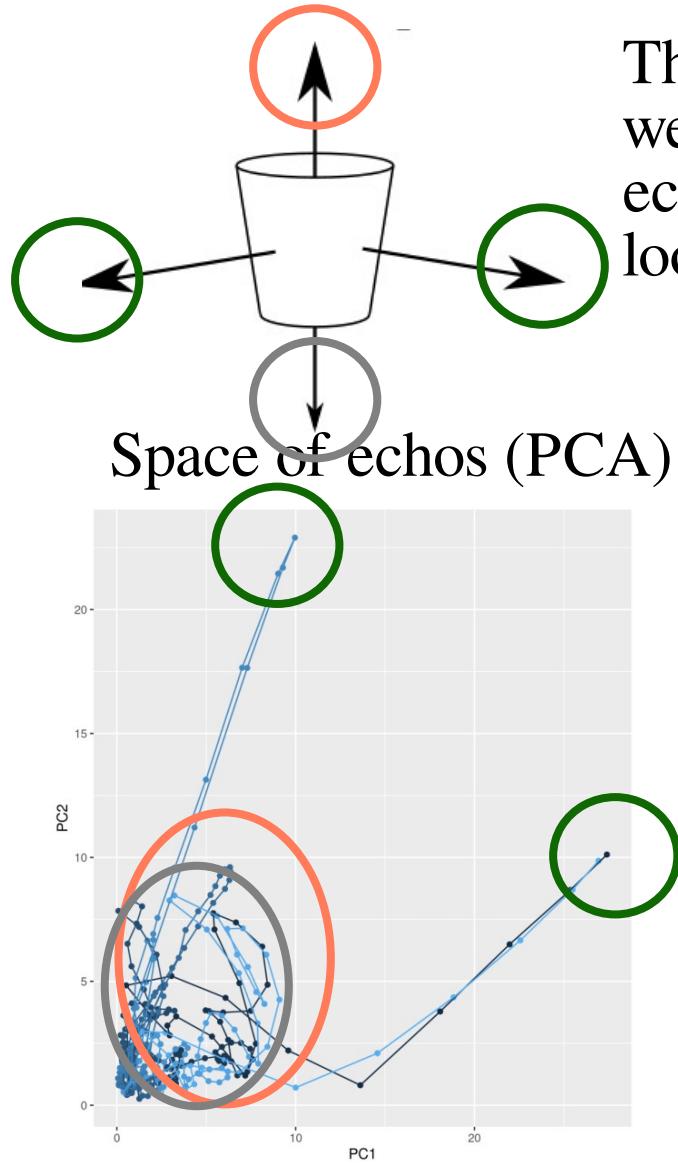
Topological

Topological features are robust

- The space of echos is ignores trajectory distortions



New insight: Prominent scatterers

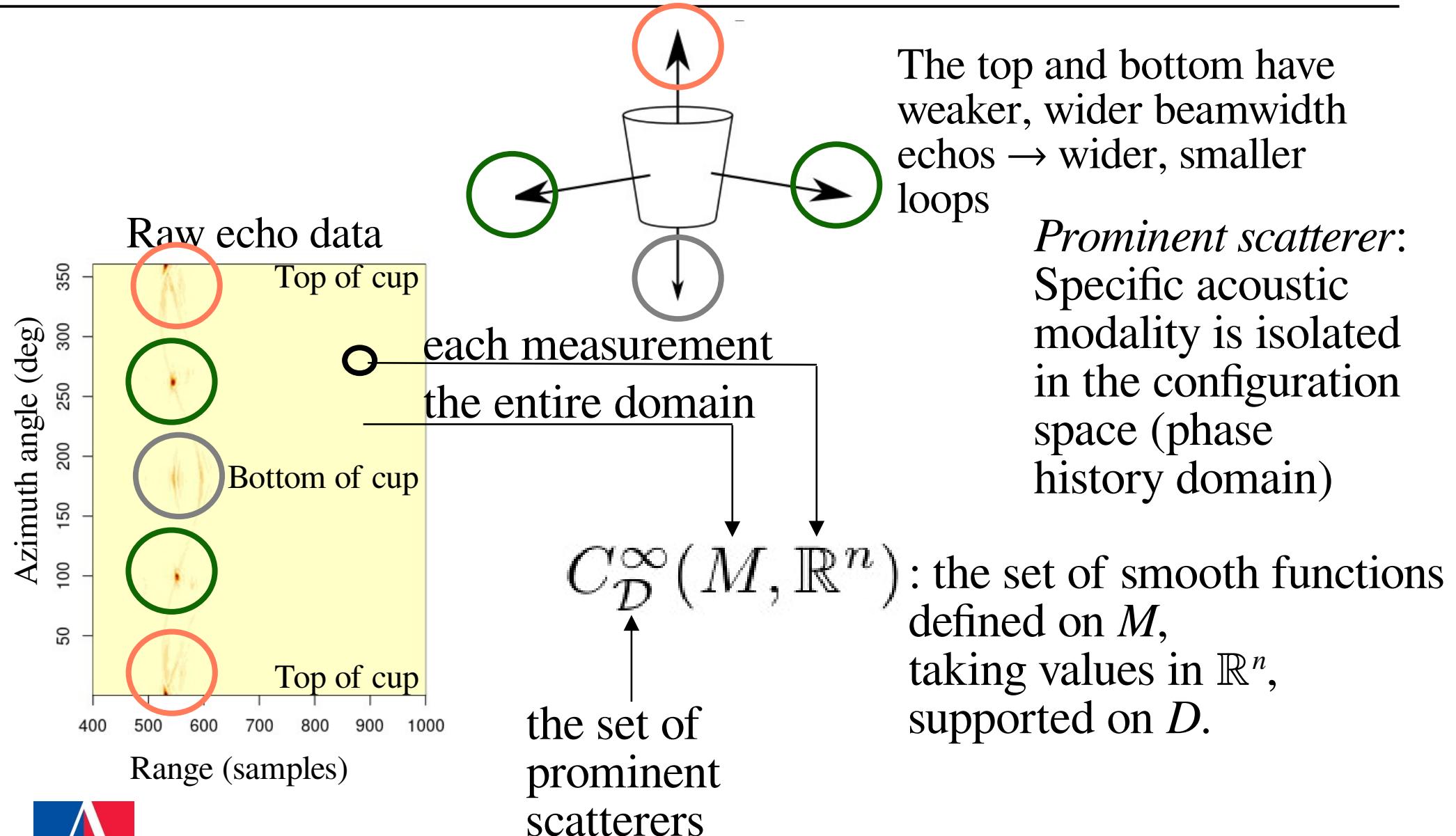


The top and bottom have weaker, wider beamwidth echos \rightarrow wider, smaller loops

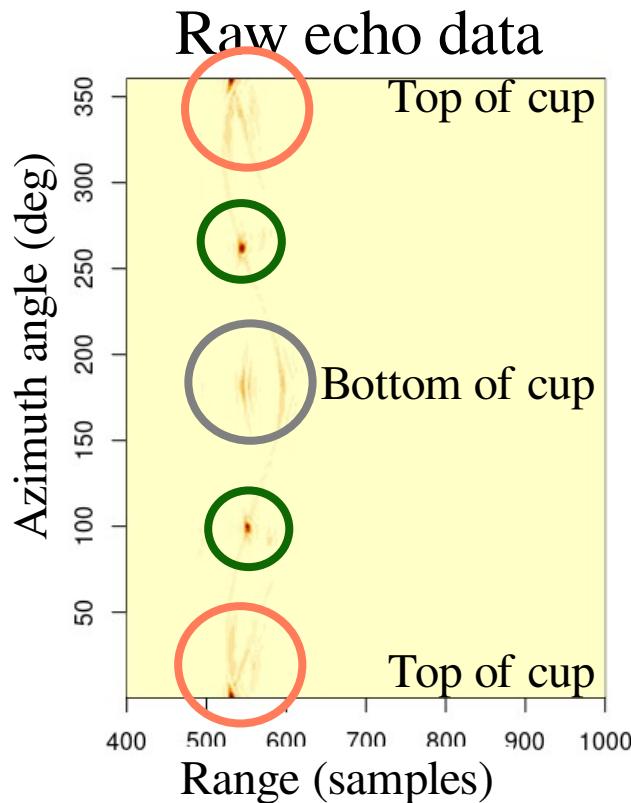
Prominent scatterer:
Specific acoustic modality is isolated in the configuration space (phase history domain)

Isolated scatterers correspond to visible features in the space of echos

Topological space of echos



Flexibility in the signal models



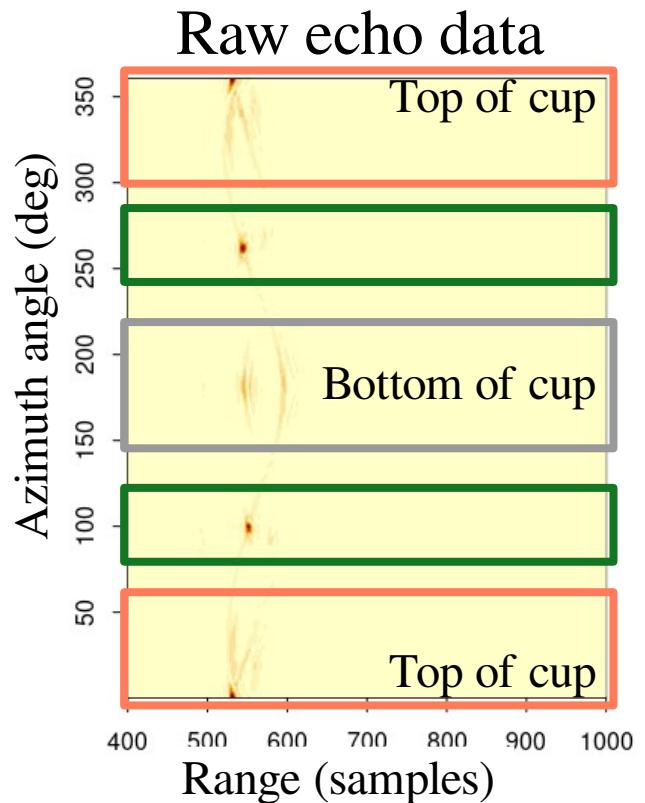
Topology says:
Both models
equally valid...
but one might
be more useful!

$$C_D^\infty(S^1 \times \mathbb{R}, \mathbb{R})$$

azimuth

range

single sample



$$C_D^\infty(S^1, \mathbb{R}^n)$$

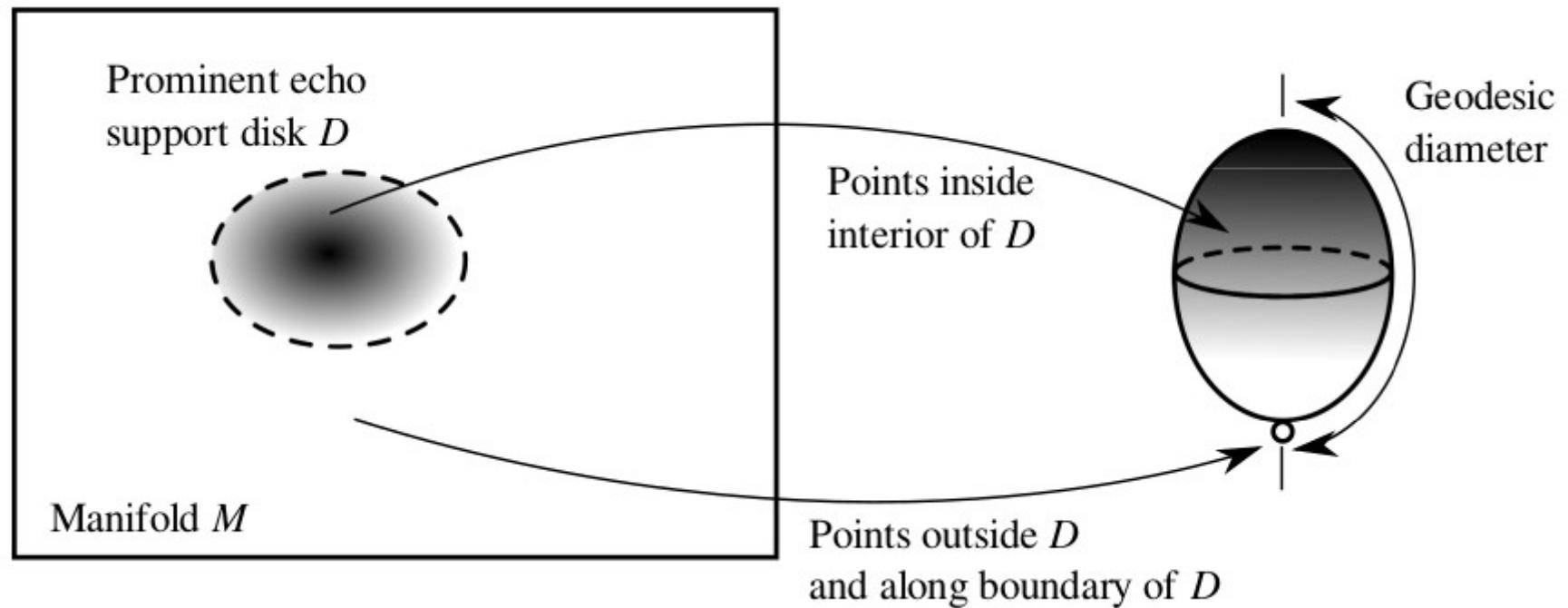
azimuth

vector of range samples

Signals to spaces (our main result)

Theorem 1. *Let M be a smooth manifold and suppose that $n > 2 \dim M$. For a generic v in $C_D^\infty(M, \mathbb{R}^n)$, the signature space of v is homeomorphic to a wedge product of spheres of (intrinsic) dimension $\dim M$.*

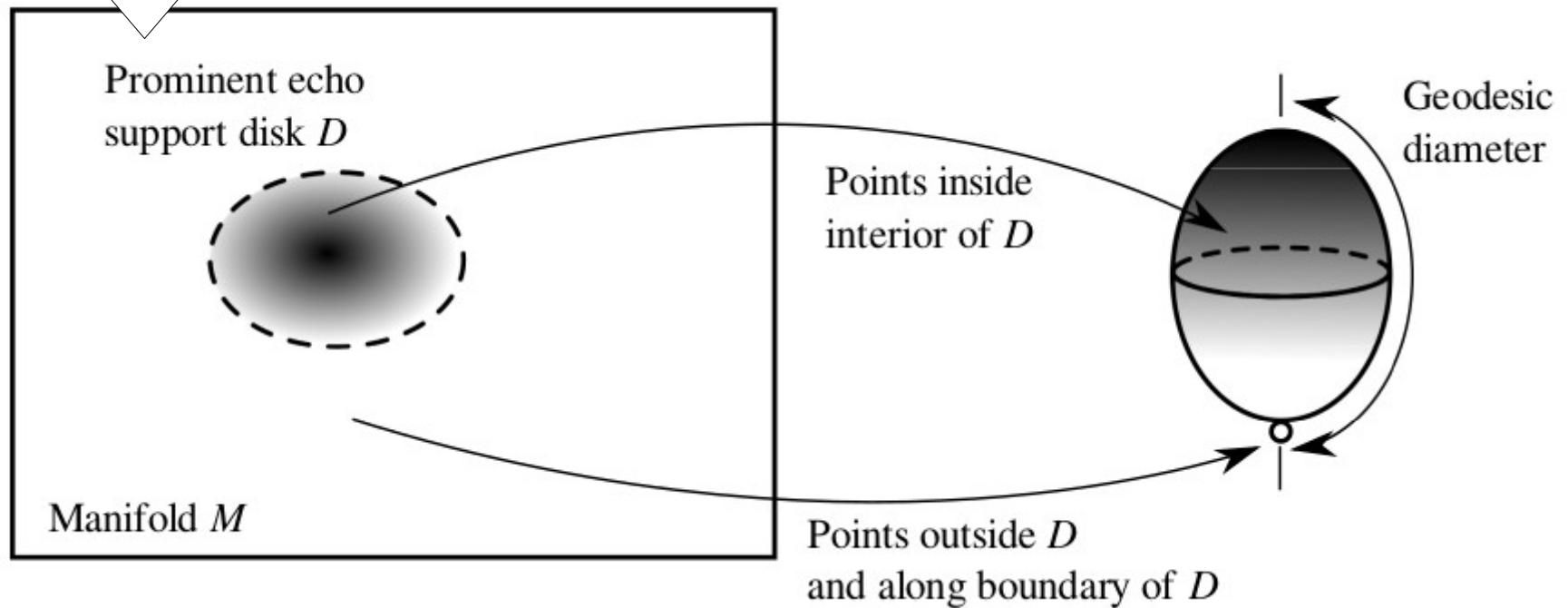
Moreover, each prominent echo corresponds to a sphere of the same dimension as M in the signature space. Under the usual metric for \mathbb{R}^n , the cross section for a prominent echo is a lower bound for the geodesic diameter of its corresponding sphere³.



A sonar signature is a function on M

Theorem 1. Let M be a smooth manifold and suppose that $n > 2 \dim M$. For a generic v in $C_D^\infty(M, \mathbb{R}^n)$, the signature space of v is homeomorphic to a wedge product of spaces of (intrinsic) dimension $\dim M$.

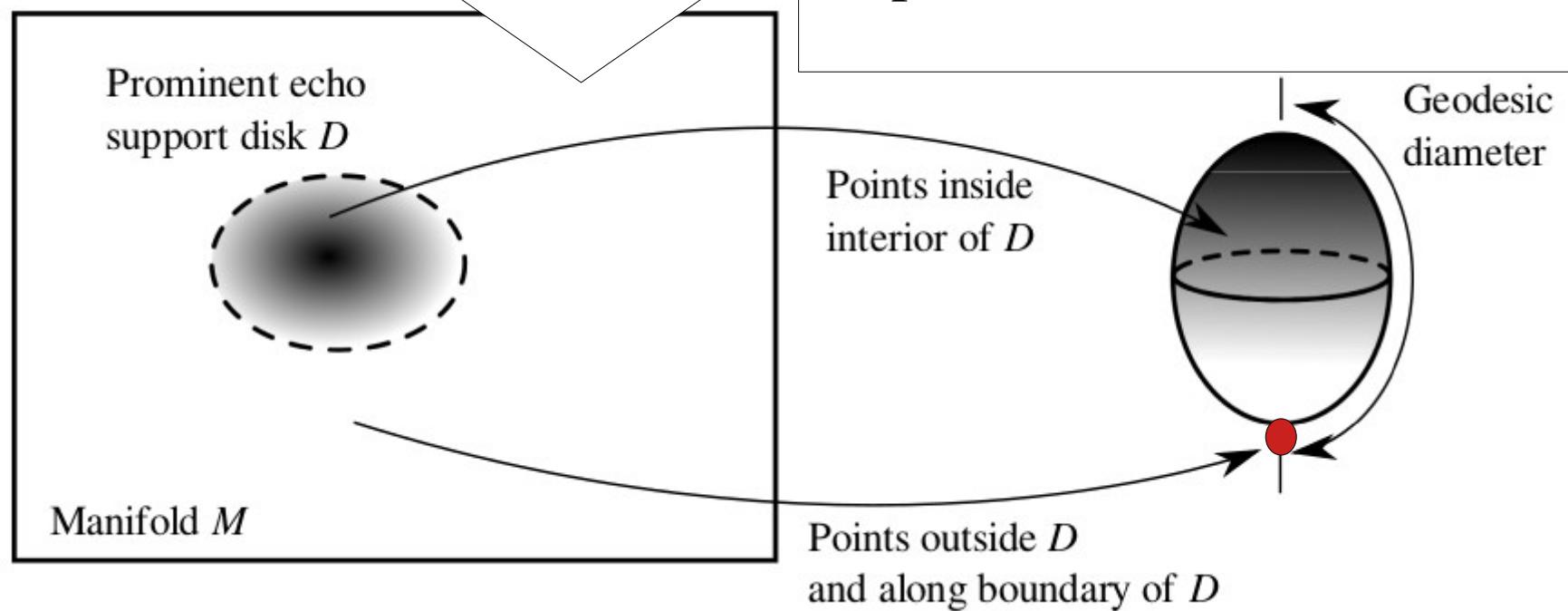
Moreover, each prominent echo corresponds to a sphere of the same dimension as M in the signature space. Under the usual metric for \mathbb{R}^n , the cross section for a prominent echo is a lower bound for the geodesic diameter of its corresponding sphere³.



Its image is a “bouquet” of spheres

Theorem 1. Let M be a smooth manifold and suppose that $n > 2 \dim M$. For a generic v in $C_D^\infty(M, \mathbb{R}^n)$, the signature space of v is homeomorphic to a wedge product of spheres of (intrinsic) dimension $\dim M$.

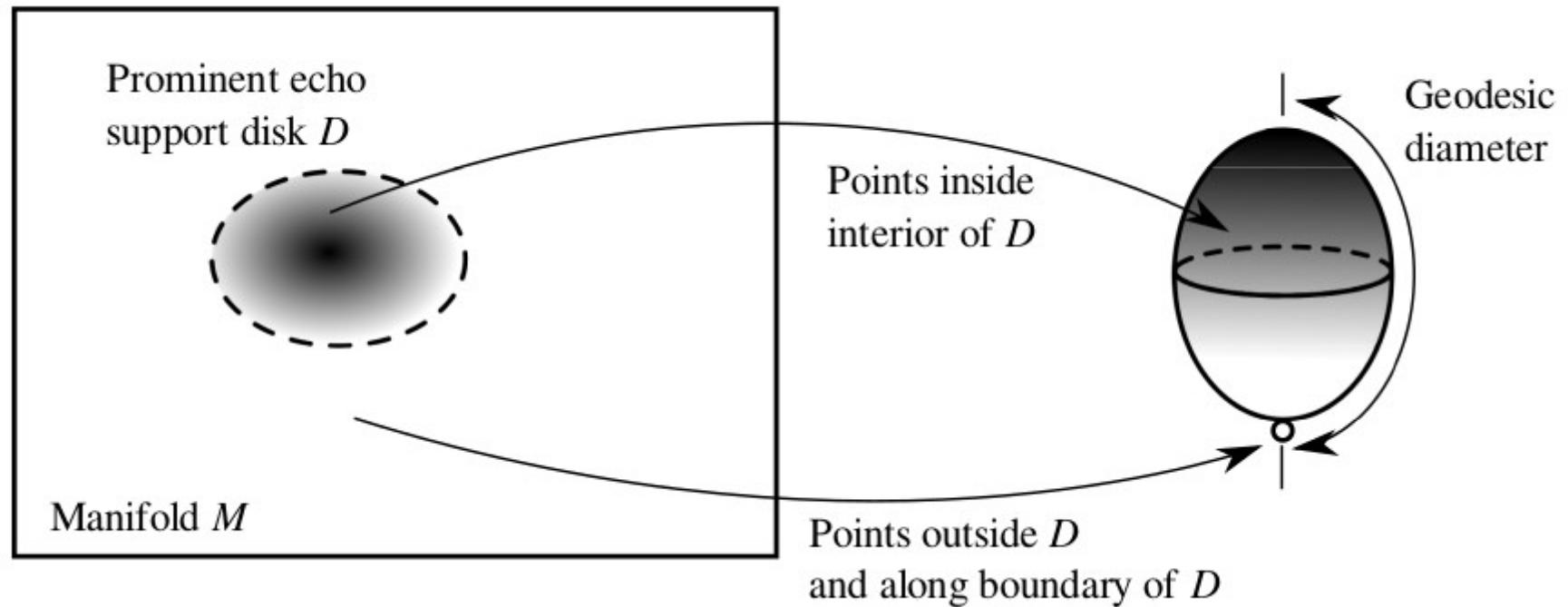
Moreover, each prominent dimension as M in the signature space corresponds to a sphere of the same dimension. Under the lower bound, every point outside prominent scatterers yields no echo, so its corresponding sphere³ maps to the same value



...with typically enough room to not overlap

Theorem 1. Let M be a smooth manifold and suppose that $n > 2 \dim M$. For a generic v in $C_D^\infty(M, \mathbb{R}^n)$, the signature space of v is homeomorphic to a wedge product of spheres of (intrinsic) dimension $\dim M$.

Moreover, each prominent echo corresponds to a sphere of the same dimension as M in the signature space. Under the usual metric for \mathbb{R}^n , the cross section for a prominent echo is a lower bound for the geodesic diameter of its corresponding sphere³.

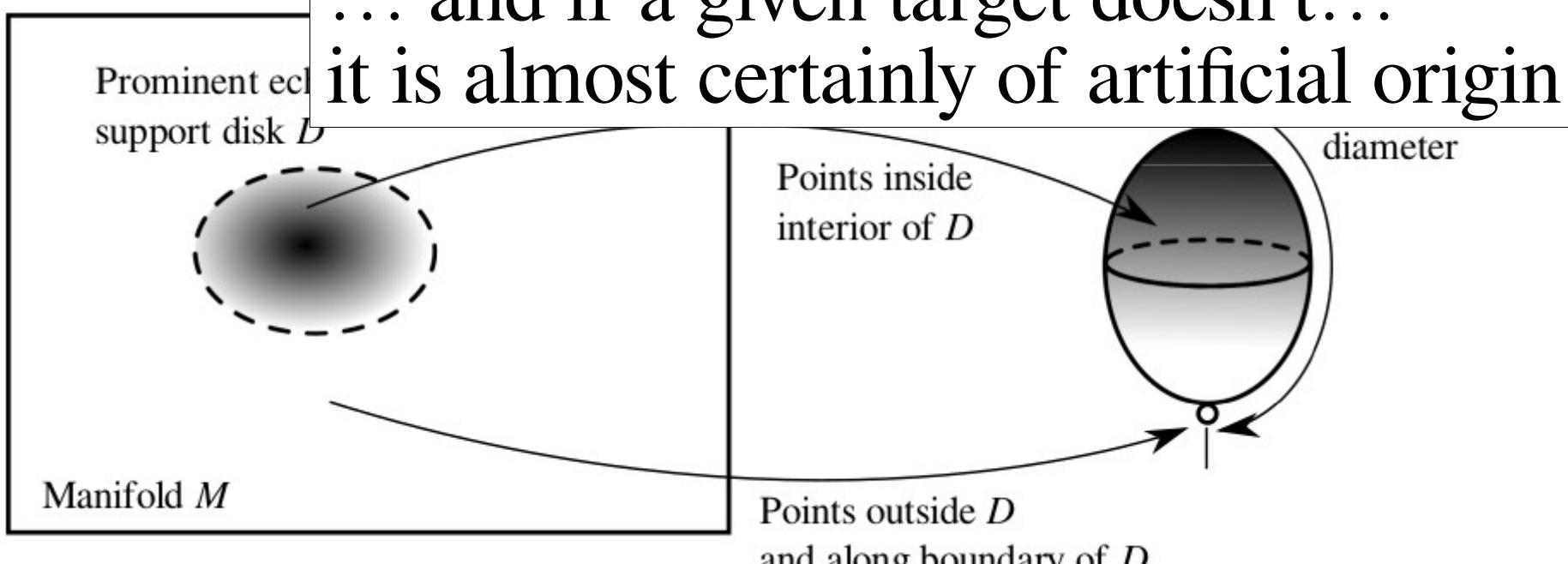


Typical targets will look like this

Theorem 1. Let M be a smooth manifold and suppose that $n > 2 \dim M$. For a generic v in $C_D^\infty(M, \mathbb{R}^n)$, the signature space of v is homeomorphic to a wedge product of spheres of (intrinsic) dimension $\dim M$.

Moreover, each prominent echo corresponds to a sphere of the same dimension as M in the signature space. Under the usual metric for \mathbb{R}^n , the cross section for a prominent echo is a lower bound for the geodesic diameter of its corresponding sphere³.

... and if a given target doesn't...
it is almost certainly of artificial origin



Testing this as a null hypothesis

- Homeomorphisms cannot be tested directly
- But a weaker test is homology, and that we can compute directly from the theorem:

Estimable via $\dim H_k(v(M))$ →

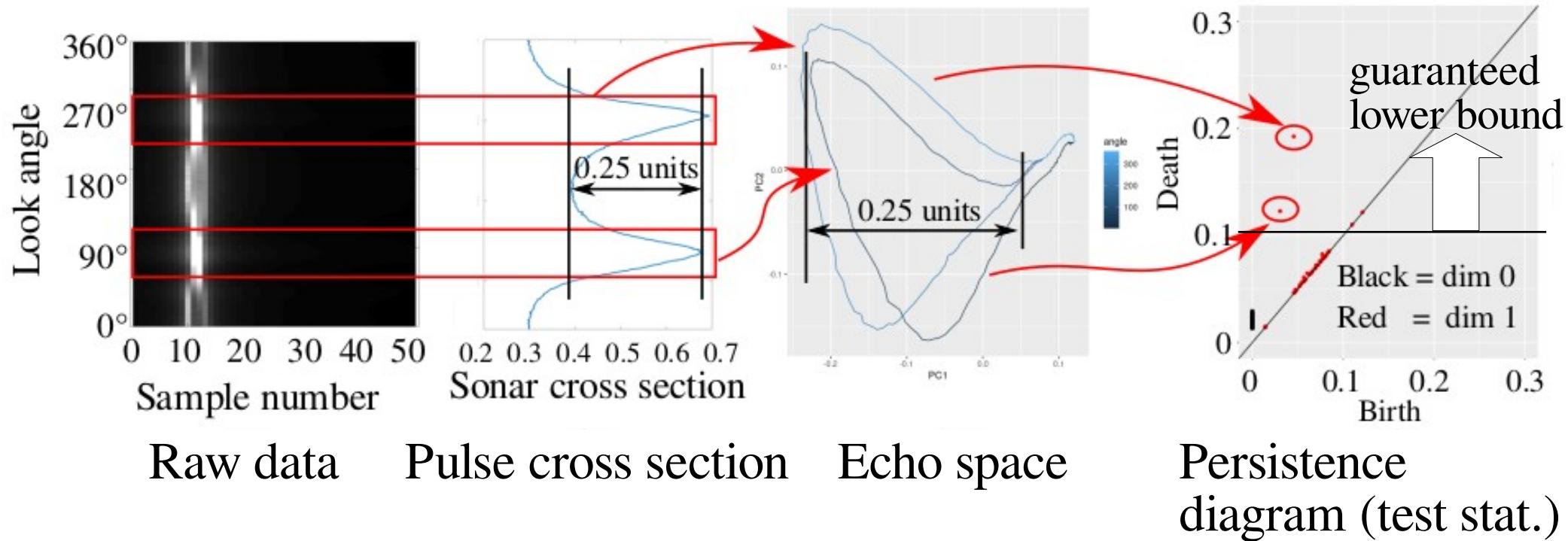
$$\dim H_k(v(M)) = \begin{cases} 1 & \text{if } k = 0, \\ \#\mathcal{D} & \text{if } k = \dim M, \\ 0 & \text{otherwise.} \end{cases}$$

measurable!
known!

- Under noisy conditions, persistent homology is a test statistic* for “target unusualness”
- Takeaway: We **finally** have theoretical justification for using topology to classify!

*Omer Bobrowski and Primoz Skraba. A universal null-distribution for topological data analysis. *Scientific Reports*, 13(1):12274, 2023.

Simulation check: point scatterers

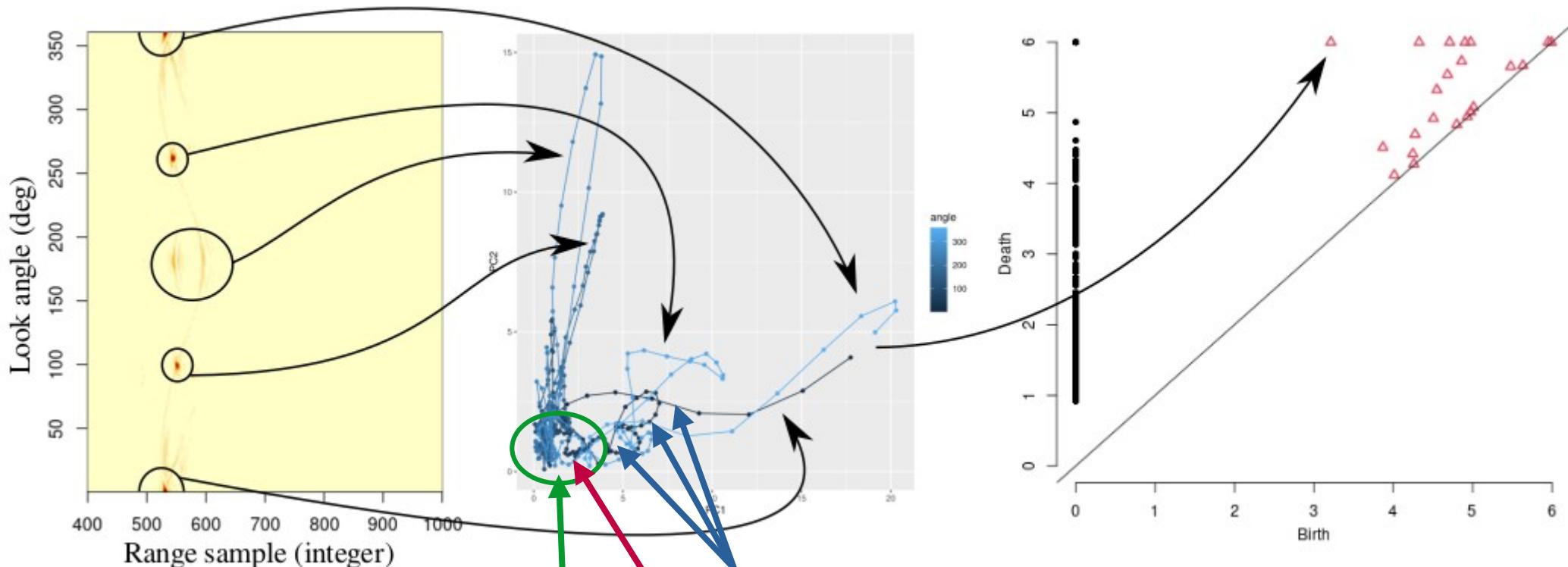


Proposition 7. *For the 1-dimensional embedded Vietoris-Rips filtration VR_ϵ constructed from the signature space as above, each prominent echo corresponds to a generator with death time bounded below by $\sigma/2$.*

$$0.25 / 2 = 0.125 \text{ in this case}$$

Michael Robinson

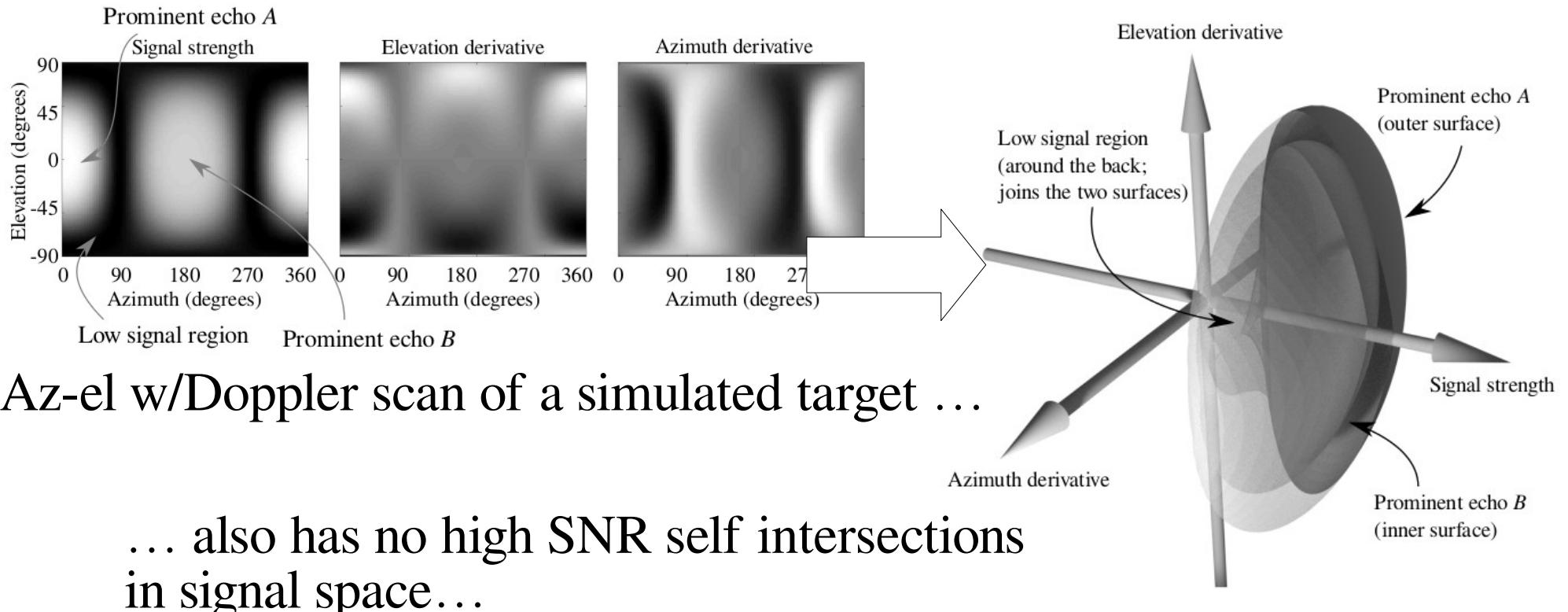
Lab check: Styrofoam cup with lid



these loops don't really intersect

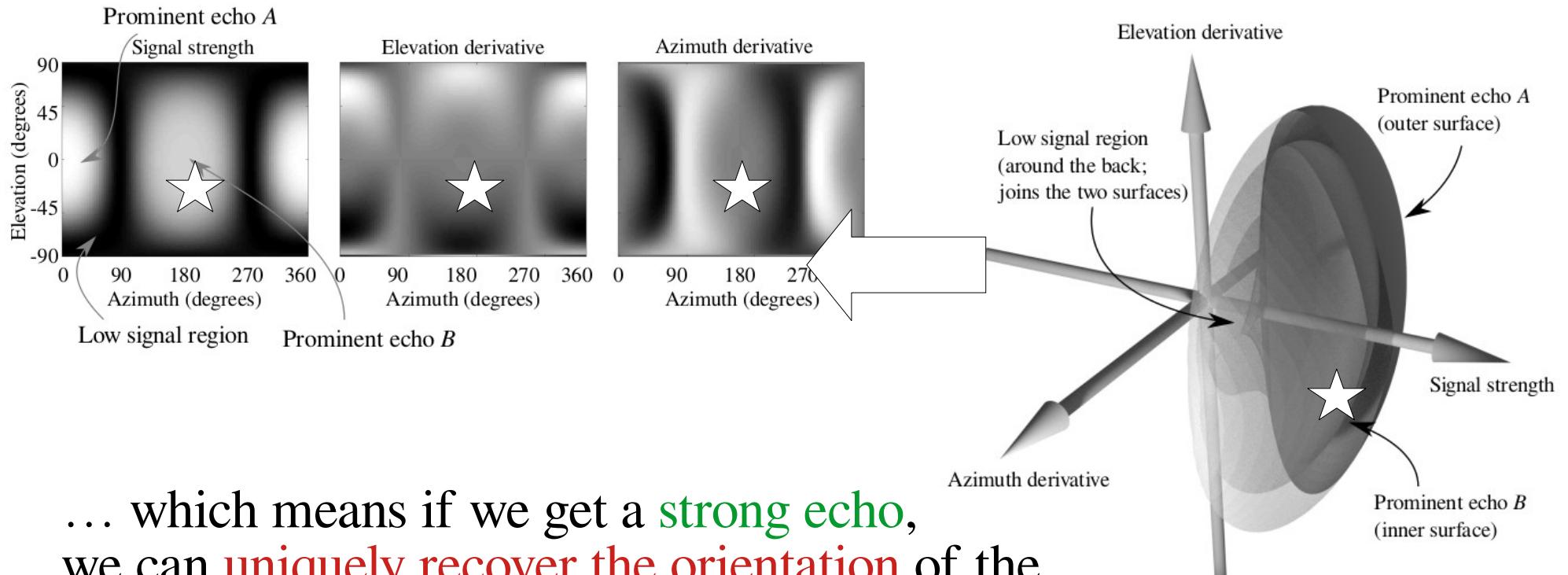
Proposition 3. *Let M be a smooth manifold and assume that $n > (2 \dim M)$. For a generic v in $C_D^\infty(M, \mathbb{R}^n)$, the self-intersections in the signature space of v only occur at points where $v(t) = 0$.*

An unexpected opportunity?



Proposition 3. *Let M be a smooth manifold and assume that $n > (2 \dim M)$. For a generic v in $C_D^\infty(M, \mathbb{R}^n)$, the self-intersections in the signature space of v only occur at points where $v(t) = 0$.*

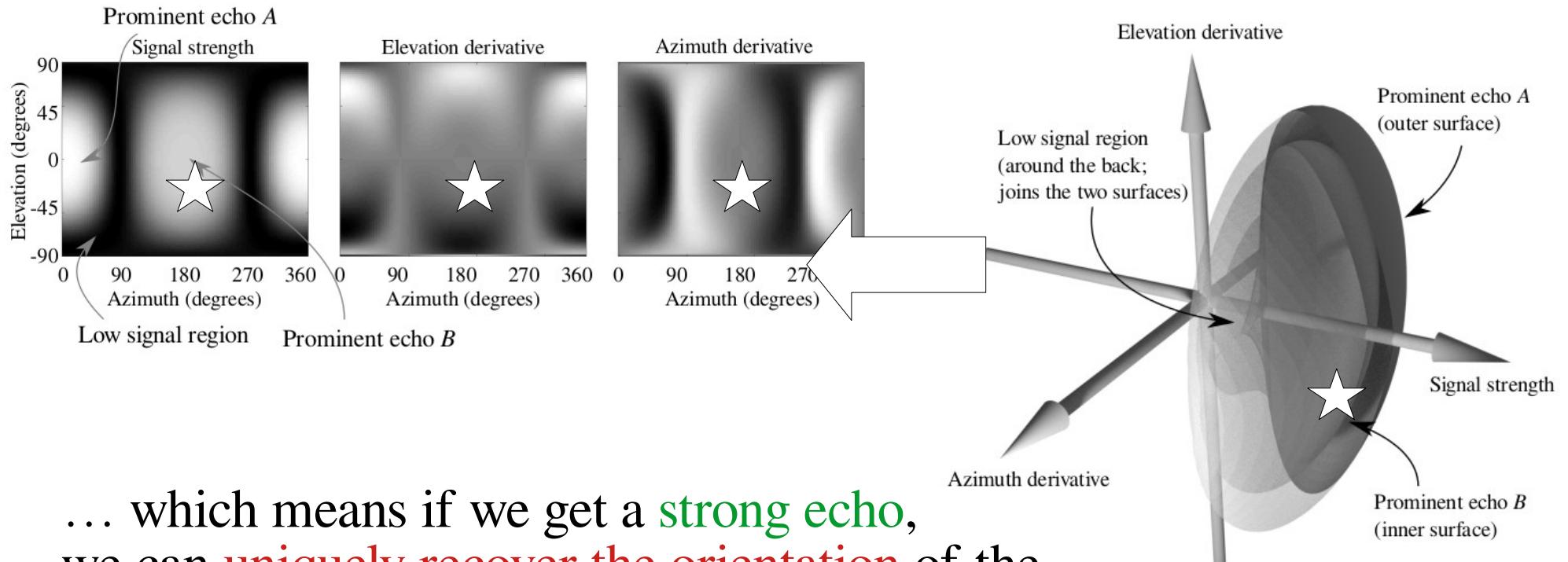
An unexpected opportunity?



... which means if we get a **strong echo**,
we can **uniquely recover the orientation** of the
target **from one measurement!**

Proposition 3. *Let M be a smooth manifold and assume that $n > (2 \dim M)$. For a generic v in $C_D^\infty(M, \mathbb{R}^n)$, the self-intersections in the signature space of v only occur at points where $v(t) = 0$.*

An unexpected opportunity?



... which means if we get a **strong echo**,
we can **uniquely recover the orientation** of the
target **from one measurement!**

This is a **topological version** of *monopulse estimation*,
which appears to be completely novel (esp. the Doppler part)

Presently: Implementing this idea on data from collaborators!

Michael Robinson

Next up

- Testing on real and realistic simulated data
 - Test bouquet-of-spheres hypothesis on collaborator-provided data
 - Test orientation-finding tools
- Tie back to topological structure theorems recently proven
 - Aim for geometric uncertainty quantification, especially around curvature, embedded reach, and the like...

To learn more...

Michael Robinson

michaelr@american.edu

<http://drmichaelrobinson.net>

Relevant papers:

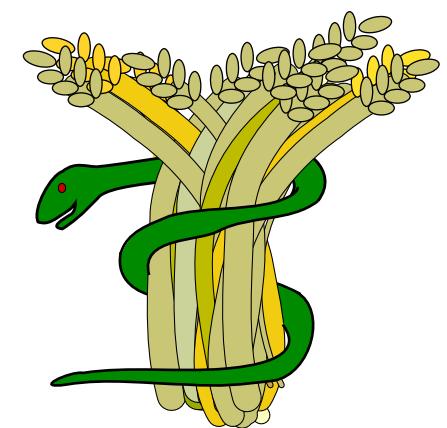
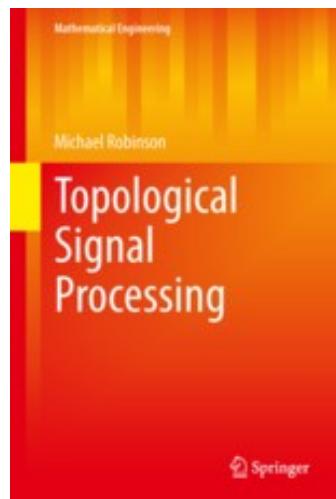
<https://doi.org/10.1121/10.0037085>

[arXiv:2205.11311](https://arxiv.org/abs/2205.11311)

<https://doi.org/10.1017/S0956792522000365>

Software:

<https://github.com/kb1dds>



Michael Robinson