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Motivation

e Goal: Detect and 1dentify objects on the seatloor using
their active sonar signatures
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e Nearly all research, development, and fielded systems

follow this common pipeline
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Motivation

e Under tightly controlled conditions, sonar image
quality 1s very good

Trajectory and

propagation
data o

Echo Image j
data formation

Target detection performance 1s good
Focus, contrast, etc. good too
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Motivation

e Machine learning-based classifiers perform well if
provided lots of data
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Motivation

e Chaining these tools yields upper bound on overall

erformance —
P o—
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Motivation

e Realistically, trajectory won't be as good; vast training

is not available S
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Motivation

e Question: What strategies remain in this case?
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Motivation

e Answer: Trajectory-invariant topological signal rep'ns

Trajectory and

pXpagation
data o

Topological
Echo Image OP ¢ &
data formation S1NALUTC
features 3 )
A 5. E o
0 ol | 4
é L ] rd Black = clusters
o % ' Red = loops
>

PD

Michael Robinson



Initial 1nsight: topological tools do work

Metric space of echos
(not image formation!)

Fast time

Table of mean
misclassification
rates for various
metrics

(smaller is better)

Persistent HO Persistent H1
T T T T

0.225 0.225

Persistence /
diagram | | oml / _
0215 * 1 0.215 /
s £
: |/
/ . 0.21f | / -
0.205‘/ 1 0205/ 1
0'20.2 o.l21 o.;z 0.23 0‘20.2 oA‘21 0.‘22 0.23
Birth 5 Birth
20

(Processed data is representative only!)

Metric Target types|Target groups

Spectral L? 4.32 2.32

Spectral corr. 3.58 2.19 ,
Tucker [6, Fig. 5(b)]|  2.15 1.57 Non-topological
H, with L? 1.47 1.28 Topol()gical

H, with L* 2.49 1.70

Hy with corr. 1.62 1.30

H, with corr. 2.38 1.57
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Topological tfeatures are robust

e The space of echos 1s 1ignores trajectory distortions

~ Phase history
.. (correct trajectory)

Phase history
(distorted trajectory) "

eeeeee

b Spaces of echoes

Focused image (a) (projected to 2d) (D) Blurred image
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New 1nsight: Prominent scatterers

A _ The top and bottom have
weaker, wider beamwidth

echos — wider, smaller
loops
Raw echo data

Top of cup .
( v > Prominent scatterer:
Space oftchos (PCA) Specific acoustic

modality 1s 1solated

Ogottom of cup in the configuration

space (phase
history domain)

100 150 200 250 300 350

Azimuth angle (deg)

50
|

Isolated scatterers
correspond to

visible features in
the space of echos

Top of cup

400 500 600 700 800 900 1000

Range (samples)
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Topological space of echos

* The top and bottom have
weaker, wider beamwidth
echos — wider, smaller

G/E?\@ loops
Raw echo data Prominent scatterer:
81 (7 Top of cup @ Specific acoustic
ELR o__each measurement modality 1s isolated
% g O the entire domain in the configuration
2. space (phase
g - OBottom of cup l history domain)
g7 v
<z O C'% (M, R™): the set of smooth functions
o ll defined on M,
: Top of cup T taking values in R”,
a0 500600 700 00 00 1000 the set of SuppOI‘ted on D.
Range (samples) prominent

scatterers
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Flexibility in the signal models

Raw echo data Raw echo data
8 Top of cup 3 ‘ Top of cup
o0 g - o0 8 -
S 3
o O Topology says: T g ] |
=) o
S s g o
g OBottom ofcup Both models g Bottom of cup
S g . 2 8
gF equally valid...  £*°~
N .
<z O but one might < s |
e be more useful! - |
Top of cup Top of cup
400 500 /OO 700 ann 900 1000 400 R0 AON 700 /0N 900 1000
Range (samples) Range (samples)
azimuth a21muth
/ range 1
n
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ES

i

Michael Robinson



Signals to spaces (our main result)

Theorem 1. Let M be a smooth manifold and suppose that n > 2dim M. For
a generic v in CX(M,R"™), the signature space of v is homeomorphic to a wedge
product of spheres of (intrinsic) dimension dim M.

Moreover, each prominent echo corresponds to a sphere of the same dimen-

ston as M wn the signature space.

Under the usual metric for R™, the cross

section for a prominent echo is a lower bound for the geodesic diameter of its

corresponding Spher

Prominent echo
support disk D

— —

Manifold M

| Geodesic

. diameter
Points inside

interior of D

— o

Points outside D
and along boundary of D
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A sonar signature 1s a function on M

Theorem_1. Let M _be_a smooth manifold and suppose that n > 2dim M. For
a generz’clv in CX (M, R”)l the signature space of v is homeomorphic to a wedge

product of sp| s of (intrinsic) dimension dim M.
Moreover, ch prominent echo corresponds to a sphere of the same dimen-

ston as M 1 e signature space. Under the usual metric for R™, the cross
section for a minent echo is a lower bound for the geodesic diameter of its
correspondi er

Prominent echo
support disk D

Manifold M

Points inside
interior of D

| Geodesic
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Its 1mage 1s a “bouquet” of spheres

Theorem 1. Let M be a smooth manifold and suppose that n > 2dim M. For
a generic v in CX (M,R™), the signature space of v is homeomorphic to a wedge

product of[.sphere.s of (intrinsic) dimension dim M

Moreover, each prominent |
ston as M wn the signature sy
section for a prominent echo i
corresponding spher

Prominent echo
support disk D

Manifold M

rorresponds to a sphere of the same dimen-

Under

wer bo

Every point outside prominent %%
scatterers yields no echo, so %S

maps to the same value

Points inside
interior of D

/

Points outside D
and along boundary of D

Geodesic
diameter
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...with typically enough room to not overlap

T 1. Let M be a smooth manifold and suppose thath > 2dim M l For
algeneriqv in CX(M,R"™), the signature space of v is homeomorphic To_a wedge

product of spheres of (intrinsic) dimension dim M.

Moreover, each prominent echo corresponds to a sphere of the same dimen-

ston as M wn the signature space.

Under the usual metric for R™, the cross

section for a prominent echo is a lower bound for the geodesic diameter of its

corresponding sphe’r

Prominent echo
support disk D

Manifold M

Points inside
interior of D

| Geodesic
diameter
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Points outside D
and along boundary of D
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Typical targets will look like this

T

Let M _bhe a smooth manifold and suppose that n > 2dim M. For

algeneric v in CX(M,R"™) ) the signature space of v is homeomorphic to a wedge

product of spheres of (intrinsic) dimension dim M.

Moreover, each prominent echo corresponds to a sphere of the same dimen-

ston as M wn the signature space.

Under the usual metric for R™, the cross

section for a prominent echo is a lower bound for the geodesic diameter of its

corresponding .spher

Prominent ecl

... and 1f a given target doesn’t...
it 1s almost certainly of artificial origin
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Testing this as a null hypothesis

 Homeomorphisms cannot be tested directly

e But a weaker test 1s homology, and that we can
compute directly from the theorem:

L k=0T
: : dim Hy(v(M)) = { #D*“"if k = dim M ,«— known!
Estimable via _— k(v(M)) #D if im

persistent homology

measurable!

0 otherwise.

e Under noisy conditions, persistent homology 1s a test
statistic* for “target unusualness”

e Takeaway: We finally have theoretical justification
for using topology to classity!

*Omer Bobrowski and Primoz Skraba. A universal null-distribution for topological data

l“ analysis. Scientific Reports, 13(1):12274, 2023.
EJ Michael Robinson



Simulation check: point scatterers

Look angle

0.3 /
360° q 7
i /\ guaranteed
270° e \
= I N . . o2iee lower’bound
a 0.25 units B © g
180 -~ \ 025 units & I 8o /ﬁ
90 %
. ' Black = dim 0
o ; X/ | Red = dim 1
0 10 20 30 40 50 0203 04 05 0.6 0.7 . 0/
Sample number Sonar cross section 0 {“B' [E.E 0.3
Ir
Raw data  Pulse cross section Echo space Persistence

diagram (test stat.)

Proposition 7. For the 1-dimensional embedded Vietoris-Rips filtration V R,
constructed from the signature space as above, each prominent echo corresponds
to a generator with death time bounded below by o /2.

\

Egj 0.25 /2 =0.125 in this case
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Lab check: Styrofoam cup with lid

100 150 200 250 300 350

Look angle (deg)

50
|

A

T T T T 1
400 500 600 700 BOO 900

Range sample (integer)

these loops don’t really intersect

Proposition 3. Let M be 4 smootR manifold and assume that n > (2dim M).
For a generic v in CF (M,R"™), the self-intersections in the signature space of
v only occur at points where'v(t) = 0.
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An unexpected opportunity?

Prominent echo A

. ; . ; — Elevation derivative
Signal strength Elevation derivative Azimuth derivative

Low signal region \

(around the back;
joins the two surfaces)

Prominent echo A
(outer surface)

"

Elevation (degrees)

o( 90 180 270 360 90 180 270 360 0 90 180 2
\ Azimuth (degrees) '| Azimuth (degrees) Azimuth (degrees

Low signal region  Prominent echo B

Az-el w/Doppler scan of a simulated target ...

Signal strength

Azimuth derivative
Prominent echo B

... also has no high SNR self intersections ] (imner surfac)
in signal space...

Proposition 3. Let M be a smooth manifold and assume that n > (2dim M).

For a generic v in CF (M,R"™), the_self-intersections in the signature space of
v only occur at points where v(t) = 0.
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An unexpected opportunity?

Prominent echo A

. ; . ; — Elevation derivative
Signal strength Elevation derivative Azimuth derivative

% / Prominent echo A
Eh , ; (outer surface)
§ Low signal region
E (around the back;
= Jjoins the two surfaces)
E -
0

0| 90 180 270 360 90 180 270 360 O 90 180 27

\ Azimuth (degrees) Azimuth (degrees) Azimuth (degrees)

Low signal region  Prominent echo B

Signal strength

Azimuth derivative

... which means 1f we get a strong echo, | Prominent echo

(inner surface)
we can uniquely recover the orientation of the 1
target from one measurement!

Proposition 3. Let M be a smooth manifold and assume that n > (2dim M).

For a generic v in CF (M,R"™), the_self-intersections in the signature space of
v only occur at points where v(t) = 0.
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An unexpected opportunity?

Prominent echo A , o
Elevation derivative

,/ Signal strength Elevation derivative Azimuth derivative

Prominent echo A

Ij!

ﬁ
¥
B ; , (outer surface)
§ Low signal region
g (around the back;
= joins the two surfaces)
E -
m

0oL 9 180 270 360 90 180 270 360 0 90 180 27

\ Azimuth (degrees) -.l Azimuth (degrees) Azimuth (degrees)

Low signal region  Prominent echo B

Signal strength

Azimuth derivative
Prominent echo B

... which means 1f we get a strong echo, | g
we can uniquely recover the orientation of the l
target from one measurement!

This 1s a topological version of monopulse estimation,
which appears to be completely novel (esp. the Doppler part)

‘ Presently: Implementing this idea on data from collaborators!
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Next up

e Testing on real and realistic simulated data

— Test bouquet-of-spheres hypothesis on collaborator-
provided data

— Test orientation-finding tools

e Tie back to topological structure theorems recently
proven

— Aim for geometric uncertainty quantification, especially
around curvature, embedded reach, and the like...
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To learn more...

Michael Robinson
michaelr@american.edu

http://drmichaelrobinson.net

Topological
Signal

Processing Relevant papers:
https://do1.org/10.1121/10.0037085
arXiv:2205.11311
https://doi.org/10.1017/S0956792522000365
Software:
https://github.com/kb1dds
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