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Motivation: Consensus file formats
● What does it mean for files to comply with a format, especially if 

the format is an ambiguous, community-defined consensus?
● Tactic: Use a binary relation, recording which files are accepted as 

valid by which parsers
● Hypothesis: Anomalous files or parsers will manifest within the 

context of this relation
                    files
A   10000011111100001111
B   01100011100010000000
C   00011000010011111111
D   00000100001101111111pa

rse
rs

1 = file parsed successfully
0 = problem parsing file

It’s probably the case that 
there are many more files 
than parsers, but this isn’t 
terribly crucial
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Main ideas of the talk
● The category Rel of relations has a simplicial representation, the Dowker 

complex
– The Dowker complex is a covariant functor
– Rel applies whenever you have tabular data
– Files accepted by parsers, extant key-value pairs, etc.

● The Dowker complex isn’t a complete invariant, but it is when weighted
– May enable statistical analysis of the topology within and between tables

● This leads to a faithful cosheaf representation
– Topology is therefore a reliable description of a table

● The cosheaf carries both the Dowker complex and its dual (transpose of 
the relation)

– One of the two Dowker complexes will usually be much bigger
– You can use the cosheaf on the smaller complex without loss of structure
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Binary relations in their category
● We should formalize the category Rel of relations
● Objects are triples (X,Y,R) where R ⊆ X × Y
● These are best thought of as tables of booleans*

1    2     3    4     5
a

b
c
d
c

e

X = {a, b, c, d, e}, Y = {1, 2, 3, 4, 5}

R = {(a,1), (a,2), (b,1), (b,3), (c,2),
         (c,3), (c,4), (c,5), (d,3), (d,4),
         (e,4), (e,5)}

*This generalizes neatly to entries with poset values
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Morphisms in Rel
● A morphism in Rel consists of a pair of functions 

f : X1→ X2, g : Y1→Y2

satisfying a compatibility condition

f

a

b
c
d
c

e

A
B
C
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Morphisms in Rel
● A morphism in Rel consists of a pair of functions 

f : X1→ X2, g : Y1→Y2

satisfying a compatibility condition

1    2     3    4     5
g(1) g(2) g(3) g(4) g(5)

A
B
C

g
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Morphisms in Rel
● A morphism in Rel consists of a pair of functions 

f : X1→ X2, g : Y1→Y2

satisfying a compatibility condition

f

a

b
c
d
c

e

A
B
C

g(1) g(2) g(3) g(4) g(5)
g1    2     3    4     5
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Classic rep’n: Dowker complex
● Each row specifies a vertex
● Each column specifies (at least one) simplex by 

selecting subsets of vertices

a

b
c
d
c

e

1    2     3    4     5
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● Each column specifies (at least one) simplex by 

selecting subsets of vertices
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The Dowker complex is functorial

f

a

b
c
d
c

e

A
B
C

Theorem: Functoriality for 
inclusions of relations
(Chowdhury and Mémoli, 
JACT, 2018.)

Theorem: Also true at full 
generality!
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Dowker is lossy
● Dowker ignores duplicate columns
● Here are several non-isomorphic relations inducing 

the same complex
                    files
A   10000011111100001111
B   01100011100010000000
C   00011000010011111111
D   00000100001101111111pa

rse
rs

D

B

C

A

         files
A   101001
B   110000
C   011101
D   001010pa

rse
rs

          files
A   00110110
B   01100000
C   01011000
D   00010101pa

rse
rs
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Weighted Dowker complex
● Weighting: Count how many times each simplex appears
● Theorem: The matrix is determined (up to isomorphism) by 

the Dowker complex with this weight function
● Deeper theorem: This can be enriched into a covariant 

functor
2

2

1

3
1

1

2

3

1
4

D

B

C

A

                    files
A   10000011111100001111
B   01100011100010000000
C   00011000010011111111
D   00000100001101111111pa

rse
rs
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Dowker weight functions
● There are actually two weight functions that distinguish 

isomorphism classes

6

11

1

311

10

6

7

5
4

D

B

C

A

                    files
A   10000011111100001111
B   01100011100010000000
C   00011000010011111111
D   00000100001101111111pa

rse
rs 2

2

1

3
1

1

2

3

1
4

D

B

C

A

Differential weight: 
For each simplex, count 
exact column matches

Total weight: 
For each simplex, count 
columns matching the 
vertices present.  Ignore 
the other vertices
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Dowker weight functions
● Theorem: Both total and differential weight are 

complete isomorphism invariants for Rel.
● The proof is constructive and algorithmic

… and so on!
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Dowker weight functions
● Theorem: Both total and differential weight are 

complete isomorphism invariants for Rel.
● The proof is constructive and algorithmic

… and so on!
Issue: Weight functions are not functorial!
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Reorganizing the data using posets
● Draw the Hasse diagram for face poset of the Dowker 

complex (arrows indicate simplicial inclusions)

X = {a,
         b,
         c,
         d}

{1,  2,  3,   4,  5,  6} = Y
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Reorganizing the data using posets
● Label the directed graph with total* weights for a 

lossless representation up to Rel isomorphism
{1,  2,  3,   4,  5,  6} = Y

:1

:2

:1

:3 :4

:2

X = {a,
         b,
         c,
         d}

:1

:1:1

:2

*Differential weights seem to be more useful in practice, though…
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Dowker cosheaf representation
● But instead of total weights, we can just list the columns!

If we want the arrows to be functions, 
we have to reverse them… They 
become set inclusions.
The diagram is actually a cosheafX = {a,

         b,
         c,
         d}

{1,  2,  3,   4,  5,  6} = Y
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Dowker cosheaf representation
● Each costalk is actually a simplex, giving a cosheaf of 

simplicial complexes on a simplicial complex!

X = {a,
         b,
         c,
         d}

{1,  2,  3,   4,  5,  6} = Y
Notation: 
CoShvAsc = category of 
these cosheaves
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Cosections may be arbitrary complexes
● Cosections on any open set are computed by gluing

(upwardly closed in the Hasse diagram =
downwardly closed in the cosheaf diagram)
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Cosections may be arbitrary complexes
● Cosections on any open set are computed by gluing

(upwardly closed in the Hasse diagram =
downwardly closed in the cosheaf diagram)
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The Dowker complex is functorial...

Face partial orders are more 
useful for most things than 
simplicial complexes!

For some mysterious 
reason, this appears to 
be a folk theorem (?!)
It’s not hard; exercise 
for the audience...
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… and so is the Dowker cosheaf
● Theorem: The Dowker cosheaf construction defines a faithful 

covariant functor* Rel → CoShvAsc.
● The proof mostly follows the functoriality proof for the 

Dowker complex

*Most authors don’t let the base space vary in a (co)sheaf morphism.  Beats me why!
It’s usually better to allow base space maps, and I need them here.
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Dowker duality
● Dowker’s name is attached to these constructions because…
● Theorem: (Dowker*, 1952)

H•(D(X,Y,R)) ≅ H•(D(Y,X,RT))
(The matrix of RT is the transpose of the matrix of R)

● This has been strengthened to a homotopy equivalence
● Several other generalizations are known

*I found Dowker’s paper very rough going.
Chowdhury & Mémoli’s paper is much easier!



 Michael Robinson

An interesting observation
● The space of global cosections for the Dowker cosheaf is 

itself a Dowker complex… of the transpose!

X = {a,
         b,
         c,
         d}

{1,  2,  3,   4,  5,  6} = Y
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An interesting observation
● The space of global cosections for the Dowker cosheaf is 

itself a Dowker complex… of the transpose!
● The Dowker cosheaf therefore has both the Dowker complex 

(base space) and its dual (global cosections) baked into it.
● Not only that, this property is functorial!
● Theorem: There is a duality functor Dual : CoShvAsc → 

CoShvAsc that exchanges the base space with the cosections
● The proof, like the others, is an elaborate diagram 

construction
● Moreover, the definition of Dual works for all cosheaves of 

abstract simplicial complexes 
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Cosheaf-of-ASC duality functor
● The Dual functor acts on non-Dowker cosheaves as well

Base space
Global 

cosections

Some random cosheaf of abstract simplicial complexes
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Cosheaf-of-ASC duality functor
● Dual(𝔅)(σ) := union of all simplices α whose costalks 𝔅(α) 

contain σ

Base space
Global 

cosections

Some random cosheaf of abstract simplicial complexesSome random cosheaf of abstract simplicial complexes

Dual(𝔅)([3]) = ∪{[c],[d],[c,d]}
                      = [c,d]
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Cosheaf-of-ASC duality functor
● Dual(𝔅)(σ) := union of all simplices α whose costalks 𝔅(α) 

contain σ

Base space
Global 

cosections

Some random cosheaf of abstract simplicial complexesSome random cosheaf of abstract simplicial complexes

Dual(𝔅)([1,3]) = ∪{[c],[d],[c,d]}
                      = [c,d]
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Cosheaf-of-ASC duality functor
● Dual exchanges the base space and space of global cosections
● Note that costalks might not be complete simplices if we 

aren’t working with Dowker cosheaves

Base space
Global 

cosections
Dual cosheaf
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Cosheaf Dowker duality
● Theorem: The space of cosections of the Dowker 

cosheaf is the Dowker dual of its base space.
– Briefly, the following functor diagram commutes:

– The only thing that needs to be shown is that dualizing a 
Dowker cosheaf yields a new cosheaf whose costalks are 
all complete simplices … and a bit of calculation besides.
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Implications for consensus file formats
● Because of functoriality, any of these Dowker constructions are 

reasonable tools for studying parser behavior on files
● Functoriality guides the process of summarization

– Which files are good exemplars of (non)compliance?
– Which parsers are redundant, or conversely, which have divergent 

capabilities?
– Statistics on the values of the weights “makes sense”

● Functoriality guides the process of curating corpora
– If we test the same set of parsers on two different corpora, how do 

we compare the results?
● You can consider parser-file relations or file-parser relations 

without losing anything
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Next steps
● We can generalize Rel to take poset values rather than booleans  

– This breaks most of the existing technology for filtrations, but not our cosheaf 
constructions

● Theorem: The Dowker cosheaf generalized for poset-valued Rel is functorial
– What can be said about persistence constructions in this case?

● We recently discovered a pseudometric on Rel, which gives it a topology
● Theorem: The total and differential weight functions are both continuous with 

respect to this topology on Rel under the sup-norm
– Chowdhury & Mémoli’s starting point is a filtration on the Dowker 

complex, which the total weight provides
– This suggests that interleavings of cosheaves might work.  (Cool!  I have 

some results on sheaf-based general interleavings)
● Explore more of the category theoretic structure of Rel

– I suspect it has at least two distinct (co)products and more category theoretic 
delights!
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To learn more...

Michael Robinson
michaelr@american.edu

http://drmichaelrobinson.net
Relevant preprints:

 https://arxiv.org/abs/2003.00976
https://arxiv.org/abs/2005.12348

Software:
 https://github.com/kb1dds

mailto:michaelr@american.edu
http://drmichaelrobinson.net/
https://arxiv.org/abs/2003.00976
https://arxiv.org/abs/2005.12348
https://github.com/kb1dds
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