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Key points
Question: Does discretization destroy dynamical 
structure?
● Differential equations can be encoded as sheaves
● Consistency of numerical methods is characterized 

by the commutativity of sheaf morphisms
● Time evolution induces a universal sheaf 

morphism
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The big picture
● Partial orders describe the relationships between variables in a 

system… order relations correspond to (differential) operators
● Every partial order has a natural topology, the Alexandroff topology

– Presheaves and sheaves “are the same thing” in this topology, since the 
gluing axiom is satisfied trivially

– Commutativity is the only actual constraint on a sheaf diagrams

Sheaves on partial orders with the
Alexandroff topology

Sheaves on topological spaces

Sheaves of discretized 
functionsSystems of equations

Graphical models

General system models

Differential equations

Discretized differential equations
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Topologizing a partial order
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Topologizing a partial order

Open sets are unions
of up-sets
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Topologizing a partial order

Open sets are unions
of up-sets
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Topologizing a partial order

Closed sets are
complements of 
open sets
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Topologizing a partial order

Intersections
of up-sets are also
up-sets
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Topologizing a partial order

Intersections
of up-sets are also
up-sets
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(   )(   )

A sheaf on a poset is...

A set assigned to 
each element, called
a stalk, and …

ℝ

ℝ2 ℝ2

ℝ3

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

ℝ ℝ2

ℝ2

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1

This is a sheaf of vector spaces on a partial order

ℝ3

(   )0 1 1
1 0 1

ℝ

(-2 1)

(The stalk on an 
element in the poset
is better thought of being
associated to the up-set)
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(   )(   )

A sheaf on a poset is...

… restriction functions 
between stalks, 
following the 
order relation…

ℝ

ℝ2 ℝ2

ℝ3

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

ℝ ℝ2

ℝ2

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1

This is a sheaf of vector spaces on a partial order

ℝ3

(   )0 1 1
1 0 1

ℝ

(-2 1)

(“Restriction” 
because it goes from
bigger up-sets to smaller ones)
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(   )(   )

A sheaf on a poset is...
ℝ

ℝ2 ℝ2

ℝ3

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

ℝ ℝ2

ℝ2

(1 -1) (  )0 1
1 0

(  )-3 3
-4 4

This is a sheaf of vector spaces on a partial order

ℝ3

(   )0 1 1
1 0 1

ℝ

(-2 1)

(1 -1) =

(   )0 1 1
1 0 1(1 0) = (0 1) (   )1 0 1

0 1 1

(  )0 1
1 0(  )-3 3

-4 4(   )1 0 1
0 1 1

2 -2
3 -3
1 -1

=

… so that the diagram
commutes!

2
3
1

2
3
1

2 -2
3 -3
1 -1

2 -2
3 -3
1 -1
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An assignment is...

… the selection of a
value from all stalks
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0 1 1
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(  )0 1
1 0

(  )-3 3
-4 4
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1 -1 (   )0 1 1

1 0 1
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(-1)

( )2
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( )3
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(-4)

(-4)

2
3
0

-2
-3
-1

The term serration is more common, but perhaps more opaque.
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A global section is...

… an assignment
that is consistent 
with the restrictions
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(   )(   )

Some assignments aren’t consistent

… but they might
be partially 
consistent

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
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Goodwin macroeconomic model
● A simple description of a national economy:

(1)       v = Employment rate

(2)       u = Workers’ share of income

v u

Variables

Equations

Eq. (1) Eq. (2)
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● A simple description of a national economy:

(1)       v = Employment rate

(2)       u = Workers’ share of income

v u uv

Variables

Equations

Eq. (1) Eq. (2)

. .

Goodwin macroeconomic model
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● A simple description of a national economy:

(1)       v = Employment rate

(2)       u = Workers’ share of income

v u uv

Variables

Equations

Eq. (1) Eq. (2)Eq. (3) Eq. (4)

. .

v = dv/dt
u = du/dt

.

. (3)
(4)

Goodwin macroeconomic model
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● A simple description of a national economy:

(1)       v = Employment rate

(2)       u = Workers’ share of income

Variables

Equations

v = dv/dt
u = du/dt

.

. (3)
(4)

C1(ℝ,ℝ) C1(ℝ,ℝ2) C1(ℝ,ℝ2) C1(ℝ,ℝ)

C0(ℝ,ℝ) C1(ℝ,ℝ) C1(ℝ,ℝ) C0(ℝ,ℝ)

pr2 pr1

pr2

pr1id id

d/dtd/dt (1)

(2)

Goodwin macroeconomic model
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Multi-equation sheaves
● Theorem: (R.) For every system of equations, there is 

a sheaf whose global sections are solutions
– Base poset has two levels: Equations < Variables
– Stalk over each variable is that variable’s set of possible 

values
– Stalk over an equation is a subset of the product of the 

variables involved
– Restriction maps are projections

Proof: Straightforward once the construction is built!

Source: M. Robinson, “Sheaf and duality methods for analyzing multi-model systems,”
arXiv:1604.04647
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Consistency: Discretizing correctly
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Discretization of functions

Ck(X,Y) ℝn

f (f(x1),…,f(xn))
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Discretization of functions

Ck(X,Y) ℝnℝm

(a1,…,am) f =      ai fi(x)Σ
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Why discretize?

Ck(X,Y) ℝnℝm

Ck - p(X,Y)

differential 
operator
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Why discretize?

Ck(X,Y) ℝnℝm

Ck - p(X,Y) ℝnℝm

differential 
operator
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Why discretize?

Ck(X,Y) ℝnℝm

Ck - p(X,Y) ℝnℝm

finite 
difference
approx

finite 
element
approx

differential 
operator

Goals:
1. Make the diagram commute as m, n → ∞

(consistency of the approximation)
2. Recover properties of the differential operator from 

the approximations (convergence of the approximation)
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Goal: a sheaf interpretation

Ck(X,Y) ℝnℝm

Ck - p(X,Y) ℝnℝm

approx sheaf 
morphism

approx sheaf
morphism

sheaf sheafsheaf

finite 
difference
approx

finite 
element
approx

Encoding

differential 
operator

C S D
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A simple example
● Consider u’ = f(u) on the real line
● This has a sheaf diagram

u’



  Michael Robinson

Finite differences
● Discretizing each function space via a fixed step h

(Δh u)n = u(nh) 

Continuous sheaf model Discretized sheaf model
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Is it a sheaf morphism?
● A sheaf morphism is a commutative diagram 

specified by the dotted arrows… is this one?

Continuous sheaf model Discretized sheaf model
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Is it a sheaf morphism?
● This square commutes if we pick f correctly...

Continuous sheaf model Discretized sheaf model

~
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Is it a sheaf morphism?
● … this one commutes trivially … 

Continuous sheaf model Discretized sheaf model
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Is it a sheaf morphism?
● … this one also commutes trivially … 

Continuous sheaf model Discretized sheaf model
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Is it a sheaf morphism?
● ...but this asks that u’ (nh) = Dhun, which means 

discretized version is exactly correct. Oops!

Continuous sheaf model Discretized sheaf model
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Finite elements
● We can also try to construct a finite elements 

approximation… from the “other side”
● Again start with the same continuous sheaf model
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Finite elements sheaf model
● Use an N dimensional subspace of functions with a 

linear embedding
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Is it a sheaf morphism?
● Although the derivative approximation can now be 

corrected by a judicious choice of embedding b… 
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Might be a sheaf morphism...
● …if not linear, now the equation itself fails
● …if linear, we may get a morphism; Galerkin 

method!
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Observations about consistency

Ck(X,Y) ℝnℝm

Ck - p(X,Y) ℝnℝm

approx sheaf 
morphism

approx sheaf
morphism

sheaf sheafsheaf

finite 
difference
approx

finite 
element
approx

Encoding

differential 
operator

C S D
defect in 
approximating 
derivatives

defect in 
approximating 
the equation

If linear, can be exact!
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Convergence: Behavior of solutions
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Global sections and dynamics
● Notice that u’ = f(u) is autonomous
● Thus global sections of are invariant under the 

action of time translation… can we generalize?
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Dynamics on sheaves
● Sheaf S and a diffeomorphism f : S(X) → S(X) on 

its space of global sections.  
● Does it extend to a sheaf automorphism?

– In our simple example, it does!
– In general, though, it may not!

● Conjecture: there is a cohomological obstruction
● But I do have a lead...
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Sheaf dynamics theorem
● Sheaf S and a diffeomorphism f : S(X) → S(X) on 

its space of global sections.
● Theorem: (R.) There is a (possibly different) sheaf 

R with the same (or more) global sections as S
– There is a sheaf morphism F: S → R that induces f on 

global sections
– R is universal: any other such sheaf P factors through R

S R

P

F
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Proof technique: pushouts

S(X) S(X)

S(U) R(U)

● First, construct the stalks and component maps...
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Proof technique: pushouts

S(X) S(X)

S(U) R(U)

S(V) R(V)

● … then construct the restrictions
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Proof technique: pushouts

S(X) S(X)

S(U) R(U)

S(V) R(V)

● … then construct the restrictions

● More technical details: gluing, universality...
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Next steps: analysis!
● When does a dynamical system induce a sheaf 

automorphism?
● Now we understand part of the diagram… but how 

does it all fit together?

● Can we push out along approximate morphisms?

approx sheaf 
morphism

approx sheaf
morphism

C S D

R

morphism

??
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