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The main idea

● Factoring out a smooth map from a signal may reveal a 
group action; denoise on the quotient by this action

● Theorem: (R.) There is an optimal, data-driven choice of 
domain that characterizes all symmetries in the signature

M. Robinson, “Universal factorizations of quasiperiodic functions,” SampTA 2015, 
http://arxiv.org/abs/1501.06190
M. Robinson, “A Topological Lowpass Filter for Quasiperiodic Signals,” IEEE Sig. Proc. Let., 
vol. 23, no. 12, December 2016, pp. 1771-1775. 

Denoising

Phase detection

http://arxiv.org/abs/1501.06190
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Sonar input data format
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Goal: reorganize and denoise!

6

2

4

1

5

3

7

8

Range → 

Pulse n um
be r →

 

Echo strength

Varying degrees 
of errors



  Michael Robinson

Goal: reorganize and denoise!
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Circular coordinates
● Given u(x), obtain

P(x) = (u(x), u( x + x
1 
), u( x + x

2 
), …, u( x + x

n
 ))

● Theorem: (Takens) Almost every P is an embedding 
for sufficiently large n and generic choice of x

k

● So if a function is periodic, the image of P is a circle
● If u is not periodic but the image of P remains close 

to a circle (not a helix), we're still in good shape
– Persistent cohomology* can compute smooth phase 

functions from time delay maps
* de Silva, Morozov, Vejdemo-Johansson “Persistent Cohomology 

and Circular Coordinates,” DCG (2011).
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Topology > Pulse order in simulation
● Since the topology of the sensor space constrains the 

embedding, pulse order can be recovered if unknown

1000 random azimuthal looks at 5 point scatterers

(First 3 principal components 
of the data)
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Topology > Pulse order in practice, too

Raw time samples
Pulses organized into 

a phase space

M. Robinson, “Multipath-dominant, pulsed doppler analysis of rotating blades,” 
IET Radar Sonar and Navigation, Volume 7, Issue 3, March 2013, pp. 217-224.
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Re-examining periodic functions
● Via symmetry: A function u: ℝ→ ℝ is periodic if 

there exists a T such that

u(x) = u(x + T) for all x
● Via diagrams: Periodic functions factor through the 

circle:

ℝ ℝ

S1

u

ϕ
U

The phase function
ϕ(x) = 2π [(x / T) mod 1]
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Re-examining periodic functions
● Via symmetry: A function u: ℝ→ ℝ is periodic if 

there exists a T such that

u(x) = u(x + T) for all x
● Via diagrams: Periodic functions factor through the 

circle:

ℝ ℝ

S1

u

ϕ
U

The phase function
can be generalized...

... as can the phase space
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Generalizing beyond circular
● Certainly, we should ask for more general inputs and 

outputs...  manifolds are good (want calculus)
● Then we should assume u, ϕ, U are all smooth

M N

C

ϕ
U

u
We'd like an 
analog of a 
monotonic 
function here: 
quotient map
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Why manifolds?
● If the phase space is not required to be a manifold, 

then the best choice is the topological quotient

M N

M / u

ϕ
U

u

This has an annoying consequence... 
ϕ can have critical points
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Accidental contractibility
● Problem: The phase space isn't amenable to 

cohomological periodicity detection using H1

● Consider u(x) = sin x, then the factorization looks like

ℝ ℝ

[-π / 2, π / 2]

ϕ
U

sin

Contractible phase space

… so we'd better ensure ϕ has constant rank
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Quasiperiodicity
● Definition: a smooth function u has a quasiperiodic 

factorization given by the commutative diagram below 
when ϕ is a surjective submersion

● We'll say u is (ϕ,C)-quasiperiodic in this case

M N

C

ϕ
U

u
A consequence of ϕ 
being a surjective 
submersion is that C 
is a manifold
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Factorization of signatures

Theorem: Optimal compressed signatures always exist
M. Robinson, “Universal factorizations of quasiperiodic functions,” SampTA 2015, 
http://arxiv.org/abs/1501.06190

Full domain

Phase space

ℂ

Full signature
(a complex-valued function)

Compressed signature
(also a complex-valued
function)

Target

Compression map

Compressed signature usually has better SNR!
Phase space + signature is more feature-rich

http://arxiv.org/abs/1501.06190
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A quasiperiodic factorization
● Consider u: given by

u(x) = sin x
● Here's a quasiperiodic factorization

ϕ(x) = x mod 2π

U(x) = sin x 

M = ℝ N = ℝ

C = S1

ϕ
U

u

0 2π

0 = 2π

M

C

ϕ
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A quasiperiodic factorization
● Consider u: given by

u(x) = sin x
● Here's another quasiperiodic factorization

ϕ'(x) = (x / 2) mod 2π

U'(x) = sin 2x 0 2π

0 = 2π

M

C

ϕ'M = ℝ N = ℝ

C = S1

ϕ'
U'

u



 Michael Robinson

Factorizations can be weird
● Consider u: ℝ→S1 given by u = U ⸰ ϕ where

ϕ : ℝ→S1, given by ϕ(x) = (6 arctan x) mod 2π

U : S1→S1, given by U(x) = x
– This is a quasiperiodic factorization, but the function 

doesn't “repeat” – every point in the range has finitely 
many preimages

2π

-2π
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Non-uniqueness of factorizations
● The category QuasiP(u) for a smooth function u:

– Objects: quasiperiodic factorizations (ϕ,U)
– Morphisms: (ϕ,U)→(ϕ',U') if there's a commutative 

diagram

● Theorem: (R.) QuasiP(u) has a unique final object, 
called the universal quasiperiodic factorization of u
– It's the correct phase space for a topological filter tuned to 

find u in a noisy signal

M C

C' N

ϕ

ϕ' U

ϕ

U'
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Algorithmics: 
finding quasiperiodic factorizations
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Algorithmics: delay embeddings
● Choosing dimension of the ambient space is tricky:

– Too high or too low dimensionality is a problem
● Consider u(x) = cos(x2)

A typical delay embedding 
with too low dimension 
gets “tangled” with self-
intersections...
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Algorithmics: delay embeddings
● Choosing dimension of the ambient space is tricky:

– Too high or too low dimensionality is a problem
● Consider u(x) = cos(x2)

… too high 
dimension yields an 
image diffeomorphic 
to ℝ: a trivial 
factorization
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Topological estimation
● Generalize to group actions on manifolds!

Full domain

ℂ
Full signature
(a complex-valued function)

u = u (x)

ℂNF(x) = (u(x),u(g1x),u(g2x), ... u(gN-1x))

Rotated copies of u
Image under generalized 
delay map: an immersed submanifold
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How does it work?
● Picking the rotations can be done, but not arbitrarily!
● Lemma: If u : M → N is a smooth map and

– M is a compact manifold 
– G is a group of diffeomorphisms acting on M transitively

Then there is a finite set {g1, … gm} such that 

F(x) = (u(x), u(g1x), .. u(gmx)) 

has constant rank and

rank dF(x) = max rank du(y) over all y in M.
● Theorem: (R.) Use these in your generalized delay map to 

obtain a universal quasiperiodic factorization
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Filtering using Quasiperiodic 
Factorizations

The QuasiPeriodic Low Pass Filter 

(QPLPF)
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Circumventing bandwidth limits
● Traditional: averaging in a connected window

– Noise cancellation (Good)
– Distortion to the signal (Bad)

● QPLPF: Safely do more averaging across the entire 
signal using a quasiperiodic factorization first
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Stage 2:
Topological 

filtering

QPLPF block diagram

Input signal Quasiperiodic
factorization

Quotient
construction Averaging filter Output signal

Stage 1:
Topological 
estimation

T
im

e

Neighbors

Average along rows
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QPLPF results

Extremely stable output amplitudeSome low
frequency
distortion
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Compare: standard adaptive filter

Unstable amplitude
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Filter performance comparison
● QPLPF combines good noise removal with signal 

envelope stability
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Ocean radar image despeckling
After topological filtering:
● Speckle and contrast improved

QPLPF
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Next steps
● Can we find the necessary “rotation” group elements 

algorithmically?
– The proof that they exist is non-constructive!
– How many are needed practically (probably more than are 

required theoretically)?
● Implementations complete for dim M = 2… 

generalize!
● Already tested on ocean SAR images.. now apply to 

others
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For more information

Michael Robinson

michaelr@american.edu

Preprints available from my website:

http://www.drmichaelrobinson.net/
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