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Problem statement
● Can we identify related proteins across species?

Protein

Protein

Protein

Protein

COG

COG

Protein

Protein

Protein

Species A Species B

COG = Clusters of Orthologous Groups – set of genetically related proteins
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Working dataset
● Source: StringDB version 9.1

http://string91.embl.de/ 
– Protein-protein interactions
– Clusters of Orthologous Groups (COGs)
– 1133 species, 5214213 proteins, 143458 COGs

● Data extract: (Angela Wilkins and Daniel Konecki)
– 7 species: human, mouse, zebrafish, D. Melanogaster, C. 

Elegans, yeast, E. coli
– Only “experimentally confirmed” interactions
– 59010 proteins represented

http://string91.embl.de/
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Protein-COG networks

Red: query protein    Cyan: proteins   Blue: COGs

Related?

Goal: identify missing or faulty protein-COG links
Limitation: Checking COGs by sequence works but is very slow
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Using COG labels
● If two proteins are in the same COG, then they tend 

to be in other COGs together also

● This holds for their neighbors as well

Start Protein Species D2 A2 GB COGS in PPI-COG Network

ASIP human 4 6.2 36 'COG0515', 'COG5023', 'COG5040', 'KOG0290', 'KOG0657', 
'KOG0695', 'KOG0841', 'KOG1375', 'KOG1388', 'KOG1574', 
'KOG3606', 'KOG3656', 'KOG4475', 'KOG4643'

10090.ENS
MUSP00000
105319

mouse 6 4.2 21 'COG0515', 'COG5023', 'COG5040', 'KOG0290', 'KOG0657', 
'KOG0695', 'KOG0841', 'KOG1375', 'KOG1388', 'KOG1574', 
'KOG3606', 'KOG3656', 'KOG4222', 'KOG4643'

Only two differences



 Michael Robinson

Key insight
● If two proteins have

– similar interaction structure with neighboring proteins and 
– their neighbors are in similar COGs

Then they probably are in the same COG
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Key insight
● If two proteins have

– similar interaction structure with neighboring proteins and 
– their neighbors are in similar COGs

Then they probably are in the same COG

Base space
Sheaf

Goal: Narrow the search 
space of possible orthologs
Tool: Local topological and 
geometric invariants

Goal: “Zero in” on groups of 
proteins whose sequences are 
related, not to each other, but 
across species
Tool: Consistency radius of a 
sheaf of pseudometric spaces
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What's new about this idea?
Usual procedure:
● Input: 

– Sequence data
– Partial protein 

interactions
– No COG information

● Output: 
– COG network

Our procedure:
● Input: 

– Protein interactions 
– Partial COG network
– No sequences

● Output: 
– COG network
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Process flowchart
Flag 

complex
Species 1
PPI graph

Species 1
PPI ASC

Neighborhood
comparison Threshold

Candidate 
protein pairs

Extract 
neighborhood

Add new 
edge

Sheafify
Construct COG 
assignment for

sheaf

COG Database

Approximate 
section radius Threshold Final list of  

protein pairs

Joint protein local ASC

Flag 
complex

Species 2
PPI graph

Species 2
PPI ASC

Extract 
neighborhood

Base space processing

Sheaf processing
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Process flowchart
Flag 

complex
Species 1
PPI graph

Species 1
PPI ASC

Neighborhood
comparison Threshold

Candidate 
protein pairs

Extract 
neighborhood

Add new 
edge

Sheafify
Construct COG 
assignment for

sheaf

COG Database

Approximate 
section radius Threshold Final list of  

protein pairs

Joint protein local ASC
Base space processing

Sheaf processing

Flag 
complex

Species 2
PPI graph

Species 2
PPI ASC

Extract 
neighborhood

75% of pairs are 
manifest in the 
COG database

87% of pairs are 
manifest in the 
COG database

Remaining 13% are proposed as 
new COGs – to be tested with 
BLAST. About 30-50% of these 
are true COGs
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Flag complex of PPI graph
● Vertices = proteins, Edges = interactions
● All cliques – an edge between every pair of vertices – become 

simplices
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Flagify

Payoff: Better representation of multi-way interactions between proteins
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Matching metrics
● We look for pairs of proteins: one from each species 

with similar 2-hop neighborhoods
● There are several metrics available:

Graph Metric Description

Vertex degree histogram A list of vertex degree frequencies

Adjacency spectrum Eigenvalues of graph adjacency matrix

Graph Laplacian spectrum Eigenvalues of the Laplacian matrix where a Laplacian matrix is the 
adjacency matrix subtracted from the diagonal matrix of vertex degrees

Graph density (undirected 
graph)

Density = (2m) / (n(n-1)), where n = # edges, m = # vertices

Graph Betti number 
(connected graph)

Graph Betti = n – m + 1, where n = # edges, m = # vertices
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Aside: Homology and spectra
● In a graph, the graph Laplacian Δ1 determines 

homology, so it's convenient and widely used

TopologyGeometry

Homology
(degrees 0, 1)

Graph Laplacian

Theorem (Hodge): 

ker Δk ≅ Hk(C∙, ∂∙)

Δ1
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Aside: Homology and spectra
● For cell complexes, the graph Laplacian and homology are 

different, but related
● There are “higher” Laplacians that determine homology, but they 

aren't much used* in data science

TopologyGeometry

Homology
(degrees 0, 1, … )

Graph Laplacian

* I'm not sure why, actually! But... we aren't either yet :-(

Theorem (Hodge): 

ker Δk ≅ Hk(C∙, ∂∙)

Δ1

Higher Laplacians

Δk
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Refining the search
● How well are local network invariants from a COG's 

proteins correlated across species?

● The local topology and geometry of the protein-COG 
network greatly reduces the search space

Graph Metric Topological? Pearson Correlation

Second bin degree histogram (D2) Yes 0.9046

Second adjacency eigenvalue (A2) Partially 0.8823
Second Laplacian eigenvalue (L2) Partially 0.3596
Graph density (GD) No 0.5634
Graph Betti number (GB) Yes 0.8840

Local topology is a strong indicator, but is not conclusive...
Remember we're looking at 50000+ proteins!
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Local sections
● The mantra of algebraic topology is “local to global”

– Poor scaling (usually cubic in the number of simplices)
– Requires linear algebra (usually good, but not always)
– Real data usually can’t be globalized due to errors

● Very little effort has been expended by others about 
“partially global” results: local sections of sheaves

● We have recently been looking at local sections
– Discovery: Interesting combinatorics is present!
– Payoff: Partially global results are more realistic, and easier 

to compute
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● An abstract simplicial complex consists of simplices  
(tuples of vertices)

Simplicial complexes
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● The attachment diagram shows how simplices fit 
together 

Simplicial complexes
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● A set assigned to each simplex and ...

A sheaf is ...

ℝ3

ℝ2

ℝ

ℝ2

ℝ

ℝ2

ℝ2

ℝ3

ℝ3

Each such set is called the 
stalk over its simplex

This is a sheaf of vector spaces 
on a simplicial complex



Michael Robinson

● … a function assigned to each simplex inclusion
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A sheaf is ...
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called a restriction
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● … so the diagram commutes.

A sheaf is ...
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● Values are placed at vertices only, corresponding to 
protein metadata

Consider a vertex assignment
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( )

( )

● In some places there is consistency, but not all

Consider a vertex assignment
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Question: What is the best 
cover by open sets, on each 
of which this assignment 
restricts to a section?
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( )

( )

● Theorem: (Praggastis) we can compute the cover 
algorithmically!

Maximal covers of local sections
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Set of observations: d(a,b)=1, d(b,c)=1.5, d(a,c)=2, d(c,e)=3
Max error (a radius): ε* = max(d(a,b),d(b,c),d(a,c),d(c,e))/2 = 1.5
Sequence of radii: (0.5,0.75,1.0,1.5)
Sectional filtration on ε 

Sectional Analysis

9/29/16 26
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Set of observations: d(a,b)=1, d(b,c)=1.5, d(a,c)=2, d(c,e)=3
Max error (a radius): ε* = max(d(a,b),d(b,c),d(a,c),d(c,e))/2 = 1.5
Sequence of radii: (0.5,0.75,1.0,1.5)
Sectional filtration on ε 

0.0: a/b/c/e

0.5: ab/c/e

0.75: ab/bc/e

1.0: abc/e

1.5: abce

Sectional Analysis

9/29/16 31

The consistency radius is the smallest threshold yielding global consistency
Theorem: (Nowak) This can be computed algorithmically!
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Local PPI complexes

Species 1 Species 2

Protein B

Protein C

Protein D

Protein 1

Protein 2

Protein 3

Protein A

NB: we use the 2-hop neighborhood, even though I'm only showing the 1-hop neighborhood

Protein pair under test
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Joint local PPI complex

Species 1 Species 2

We add an edge between 
the proposed orthologs

Protein B

Protein C

Protein D

Protein 1

Protein 2

Protein 3

Protein A

NB: we use the 2-hop neighborhood, even though I'm only showing the 1-hop neighborhood



 Michael Robinson

Sheaf of COG label sets

Species 1 Species 2

Protein B

Protein C

Protein D

Protein 1

Protein 2

Protein 3

𝒮 (A)

𝒮 (B)

𝒮 (C)

𝒮 (AB)

𝒮 (BC)

𝒮 (AC)
𝒮 (ABC)

𝒮 (AD)

𝒮 (D)

ℛ(13)

ℛ(3)

ℛ(1)

ℛ(12)

ℛ(2)

�(A1)

Protein A

NB: we use the 2-hop neighborhood, even though I'm only showing the 1-hop neighborhood
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Sheaf of COG label sets

Species 1 Species 2

Three known COGs: K, L, M

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{∅,{K},{L},
{M},{K,L},
{K,M},{L,M},
{K,L,M}}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

All restrictions are identity functions...All restrictions are identity functions...
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Sheaf of COG label sets

Species 1 Species 2

The COG database consists of a vertex assignment, like so…
but this doesn't exhibit much self-consistency…

{L}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{L,M}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

∅{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{K,L}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

∅

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{K,M}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{K}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

All restrictions are identity functions...
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Sheaf of COG label sets

Species 1 Species 2

… so instead assign the set of COGs of each protein and its neighbors…

{L,M}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{K,L,M}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{K,L,M}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{K,M}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{K,L,M}

{K,M}

{K,M}

All restrictions are identity functions...
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Sheaf of COG label sets

Species 1 Species 2

… Extend to maximal local sections.  If not a global section...

{L,M}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{K,L,M}

{K,L,M}

{K,M}

{∅,{K},{L},{M},{K,L},
{K,M},{L,M},{K,L,M}}

{K,L,M}

{K,M}

{K,M}

{K,M}

{K,M}

{K,L,M}
{K,L,M}

{K,L,M}

{K,L,M}

All restrictions are identity functions...
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Sheaf of COG label sets

Species 1 Species 2

… compute the consistency radius
Use an appropriate set metric, for instance:

{L,M}

{K,L,M}

{K,L,M}

{K,M}

{K,L,M}

{K,M}

{K,M}A ∩ B
|A| |B|

d(A,B) = 1 -

0.18

0.18

0

0

0

0

0

0
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Validation process

Sheaf-based ortholog algorithm

Reciprocal BLAST

Threshold

Match?

Look up sequences

Prediction
Validation
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Reciprocal BLAST validation 

RED- top hits

GREEN – within two

BLUE – within three

1 - consistency radiusPe
rc

en
t o

f 
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More similar topology 
and COG label structure

Less similar topology and 
COG label structure

Orthologs between 
Human and Mouse
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Conclusions
● Consistency radius is a measure of relatedness of 

protein pairs
– 30-50% of our “most likely” protein pairs are truly novel 

orthologs!
– Protein interaction network and COG self-consistency 

together predict sequence similarity
● Speculation: this is because important functional 

networks of proteins are preserved in evolution
– Maybe some of our protein pairs that don’t have similar 

sequences are functionally similar?
– Maybe they play similar roles in different pathways?



 Michael Robinson

Next steps
● Further validation

– Finish processing all seven species we have data about
– Retrospective analyses... StringDB 9.1 is a year out of date
– Can we predict what was discovered over the past year? 

● Sheaves seem natural to transfer information about 
model organisms, but are they actually effective?
– Extend processing to other metadata about the proteins in 

our network
– Drug interactions, diseases, and pathway networks (BioCyc 

repository, for instance)



 Michael Robinson

For more information
Michael Robinson

michaelr@american.edu

Preprints available from my website:

http://www.drmichaelrobinson.net/

mailto:michaelr@american.edu
http://www.drmichaelrobinson.net/
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