Finding cross-species orthologs with local topology

Michael Robinson

Acknowledgements

- SRC: Chris Capraro
- PNNL:
- Cliff Joslyn
- Katy Nowak
- Brenda Praggastis
- Emilie Purvine

Pacific Northwest

NATIONAL LABORATORY
Proudly Operated by Battelle Since 1965

- Baylor College of Medicine:
- Olivier Lichtarge
- Angela Wilkins
- Daniel Konecki

> Baylor
> College of Medicine

- Reza Ghanadan (DARPA/DSO SIMPLEX program)

Problem statement

- Can we identify related proteins across species?

Species A
Species B
COG $=$ Clusters of Orthologous Groups - set of genetically related proteins
Michael Robinson

Working dataset

- Source: StringDB version 9.1
http://string91.embl.de/
- Protein-protein interactions

Previous Knowledge

- Clusters of Orthologous Groups (COGs)
- 1133 species, 5214213 proteins, 143458 COGs
- Data extract: (Angela Wilkins and Daniel Konecki)
- 7 species: human, mouse, zebrafish, D. Melanogaster, C. Elegans, yeast, E. coli
- Only "experimentally confirmed" interactions
- 59010 proteins represented

Protein-COG networks

Using COG labels

- If two proteins are in the same COG, then they tend to be in other COGs together also

ASIP	Specie	D2			GB		COGS in PP	PPI-COG Network		
	human	4		6.2	36	'COG0515' KOG0695', KOG360	'COG5023', 'COC	COG5040', KOG0290', 'K		
				'KOG0841', 'KOG			KoGi37', 'KOG13888', KOG157			
10090.ENS MUSP00000 105319	mouse	6	4.		21		'COG0515', 'COG5023', 'COG5040,' KOG0290', 'KOG0657', KOG0695', 'KOG0841', 'KOG1375', 'KOG1388', 'KOG1574', 'KOG3606', 'KOG3656', 'KOG4222', 'KoG4643'			

Key insight

- If two proteins have
- similar interaction structure with neighboring proteins and
- their neighbors are in similar COGs

Then they probably are in the same COG

Key insight

- If two proteins have
- similar interaction structure with neighboring proteins and
- their neighbors are in similar COGs

Then they probably are in the same COG

Sheaf

Goal: "Zero in" on groups of proteins whose sequences are related, not to each other, but across species
Tool: Consistency radius of a sheaf of pseudometric spaces

Base space

Goal: Narrow the search space of possible orthologs Tool: Local topological and geometric invariants

What's new about this idea?

Usual procedure:

- Input:
- Sequence data
- Partial protein interactions
- No COG information
- Output:
- COG network

Our procedure:

- Input:
- Protein interactions
- Partial COG network
- No sequences
- Output:
- COG network

Process flowchart

Process flowchart

Michael Robinson

Flag complex of PPI graph

- Vertices = proteins, Edges = interactions
- All cliques - an edge between every pair of vertices - become simplices

$$
v_{2}
$$

$$
\begin{array}{cc}
\text { Flagify } & \left\{v_{2}, v_{3}\right\} \\
\left\{v_{3}, v_{4}\right\} & \left\{v_{1}, v_{2}, v_{3}\right\} \\
\left.v_{1}, v_{3}\right\}
\end{array}
$$

Payoff: Better representation of multi-way interactions between proteins

Matching metrics

- We look for pairs of proteins: one from each species with similar 2-hop neighborhoods
- There are several metrics available:

Graph Metric	Description
Vertex degree histogram	A list of vertex degree frequencies
Adjacency spectrum	Eigenvalues of graph adjacency matrix
Graph Laplacian spectrum	Eigenvalues of the Laplacian matrix where a Laplacian matrix is the adjacency matrix subtracted from the diagonal matrix of vertex degrees
Graph density (undirected graph)	Density $=(2 m) /(n(n-1))$, where $n=$ \# edges, $m=$ \# vertices
Graph Betti number (connected graph)	Graph Betti $=n-m+1$, where $n=$ \# edges, $m=$ \# vertices

Aside: Homology and spectra

- In a graph, the graph Laplacian Δ_{1} determines homology, so it's convenient and widely used

Aside: Homology and spectra

- For cell complexes, the graph Laplacian and homology are different, but related
- There are "higher" Laplacians that determine homology, but they aren't much used* in data science

Geometry
Topology
Theorem (Hodge):
$\operatorname{ker} \Delta_{k} \cong H_{k}(C, \partial$.

* I'm not sure why, actually! But... we aren't either yet :-(

Michael Robinson

Refining the search

- How well are local network invariants from a COG's proteins correlated across species?

Graph Metric	Topological?	Pearson Correlation
Second bin degree histogram (D2)	Yes	0.9046
Second adjacency eigenvalue (A2)	Partially	0.8823
Second Laplacian eigenvalue (L2)	Partially	0.3596
Graph density (GD)	No	0.5634
Graph Betti number (GB)	Yes	0.8840

Local topology is a strong indicator, but is not conclusive... Remember we're looking at 50000+ proteins!

- The local topology and geometry of the protein-COG network greatly reduces the search space

Local sections

- The mantra of algebraic topology is "local to global"
- Poor scaling (usually cubic in the number of simplices)
- Requires linear algebra (usually good, but not always)
- Real data usually can't be globalized due to errors
- Very little effort has been expended by others about "partially global" results: local sections of sheaves
- We have recently been looking at local sections
- Discovery: Interesting combinatorics is present!
- Payoff: Partially global results are more realistic, and easier to compute

Simplicial complexes

- An abstract simplicial complex consists of simplices (tuples of vertices)

Simplicial complexes

- The attachment diagram shows how simplices fit together

A sheaf is ...

- A set assigned to each simplex and ...

Each such set is called the stalk over its simplex
 \mathbb{R}^{2}
 This is a sheaf of vector spaces on a simplicial complex

A sheaf is ...

- ... a function assigned to each simplex inclusion

A sheaf is ...

- ... so the diagram commutes.

Consider a vertex assignment

- Values are placed at vertices only, corresponding to protein metadata

$$
\begin{aligned}
& \binom{1}{0}
\end{aligned}
$$

Consider a vertex assignment

- In some places there is consistency, but not all

Maximal covers of local sections

- Theorem: (Praggastis) we can compute the cover algorithmically!

Question: What is the best cover by open sets, on each of which this assignment restricts to a section?

- Set of observations: $d(a, b)=1, d(b, c)=1.5, d(a, c)=2, d(c, e)=3$
- Max error (a radius): $\varepsilon^{*}=\max (d(a, b), d(b, c), d(a, c), d(c, e)) / 2=1.5$
- Sequence of radii: ($0.5,0.75,1.0,1.5$)
- Sectional filtration on ε

- Set of observations: $d(a, b)=1, d(b, c)=1.5, d(a, c)=2, d(c, e)=3$
- Max error (a radius): $\varepsilon^{*}=\max (d(a, b), d(b, c), d(a, c), d(c, e)) / 2=1.5$
- Sequence of radii: ($0.5,0.75,1.0,1.5$)
- Sectional filtration on ε
-0.0: a/b/c/e

- Set of observations: $d(a, b)=1, d(b, c)=1.5, d(a, c)=2, d(c, e)=3$
- Max error (a radius): $\varepsilon^{*}=\max (d(a, b), d(b, c), d(a, c), d(c, e)) / 2=1.5$
- Sequence of radii: ($0.5,0.75,1.0,1.5$)
- Sectional filtration on ε
$\square 0.0$ a/b/c/e
■ 0.5: ab/c/e

- Set of observations: $d(a, b)=1, d(b, c)=1.5, d(a, c)=2, d(c, e)=3$
- Max error (a radius): $\varepsilon^{*}=\max (d(a, b), d(b, c), d(a, c), d(c, e)) / 2=1.5$
- Sequence of radii: ($0.5,0.75,1.0,1.5$)
- Sectional filtration on ε
$\square 0.0$ a/b/c/e
■ 0.5: ab/c/e
- 0.75: ab/bc/e

- Set of observations: $d(a, b)=1, d(b, c)=1.5, d(a, c)=2, d(c, e)=3$
- Max error (a radius): $\varepsilon^{*}=\max (d(a, b), d(b, c), d(a, c), d(c, e)) / 2=1.5$
- Sequence of radii: (0.5,0.75, 1.0,1.5)
- Sectional filtration on ε
$\square 0.0 \mathrm{a} / \mathrm{b} / \mathrm{c} / \mathrm{e}$
- 0.5: ab/c/e
- 0.75: ab/bc/e
- 1.0: abc/e

- Set of observations: $d(a, b)=1, d(b, c)=1.5, d(a, c)=2, d(c, e)=3$
- Max error (a radius): $\varepsilon^{*}=\max (d(a, b), d(b, c), d(a, c), d(c, e)) / 2=1.5$
- Sequence of radii: (0.5,0.75, 1.0,1.5)
- Sectional filtration on ε
$\square 0.0 \mathrm{a} / \mathrm{b} / \mathrm{c} / \mathrm{e}$
- 0.5: ab/c/e
- 0.75: ab/bc/e
- 1.0: abc/e

c: HRadio BRadio

The consistency radius is the smallest threshold yielding global consistency Theorem: (Nowak) This can be computed algorithmically!

Local PPI complexes

NB: we use the 2-hop neighborhood, even though I'm only showing the 1-hop neighborhood

Joint local PPI complex

NB: we use the 2-hop neighborhood, even though I'm only showing the 1-hop neighborhood

Sheaf of COG label sets

NB: we use the 2-hop neighborhood, even though I'm only showing the 1-hop neighborhood

Sheaf of COG label sets

Three known COGs: K, L, M

Sheaf of COG label sets

The COG database consists of a vertex assignment, like so... but this doesn't exhibit much self-consistency...

Species 1

Species 2
All restrictions are identity functions...

Sheaf of COG label sets

... so instead assign the set of COGs of each protein and its neighbors...

All restrictions are identity functions...

Sheaf of COG label sets

... Extend to maximal local sections. If not a global section...

All restrictions are identity functions...

Sheaf of COG label sets

... compute the consistency radius
Use an appropriate set metric, for instance:

Validation process

Reciprocal BLAST validation

RED- top hits

GREEN - within two
BLUE - within three

Less similar topology and
COG label structure

Conclusions

- Consistency radius is a measure of relatedness of protein pairs
- 30-50\% of our "most likely" protein pairs are truly novel orthologs!
- Protein interaction network and COG self-consistency together predict sequence similarity
- Speculation: this is because important functional networks of proteins are preserved in evolution
- Maybe some of our protein pairs that don't have similar sequences are functionally similar?
- Maybe they play similar roles in different pathways?

Next steps

- Further validation
- Finish processing all seven species we have data about
- Retrospective analyses... StringDB 9.1 is a year out of date
- Can we predict what was discovered over the past year?
- Sheaves seem natural to transfer information about model organisms, but are they actually effective?
- Extend processing to other metadata about the proteins in our network
- Drug interactions, diseases, and pathway networks (BioCyc repository, for instance)

For more information

Michael Robinson

michaelr@american.edu

Preprints available from my website: http://www.drmichaelrobinson.net/

