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What is a finite space?
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Inclusion structure
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Topology
If X is a set, then a topology T on X is a collection of 
subsets of X satisfying four axioms:

1. The empty set is in T

2. X is in T

3. If U is in T and V is in T then U ⋂ V is in T

4. All unions of elements of T are in T

The elements of T are called the open sets for the 
topology

The pair (X,T) is called a topological space
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Topologizing a preorder



Michael Robinson

Topologizing a preorder

Open sets are unions
of up-sets
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Topologizing a preorder

Open sets are unions
of up-sets
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Topologizing a preorder

Closed sets are
complements of 
open sets
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Topologizing a preorder

Intersections
of up-sets are also
up-sets
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Topologizing a preorder

Intersections
of up-sets are also
up-sets
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Alexandrov spaces
● A topological space in which arbitrary intersections 

of open sets are still open is called Alexandrov
● Proposition: All topological spaces over a finite set are 

Alexandrov

● All topological spaces have closures...
● ...but Alexandrov spaces also have stars



Michael Robinson

Closures
Def: The closure of a set A
is the smallest closed set
containing A

A
cl (A)

(All topological spaces can form the closure of any subset)
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Stars
Def: The star of a set A
is the smallest open set
containing A

A

(Some topological spaces cannot form stars)

Don't confuse this 
with the interior of A: 
the largest open set 
contained within A
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Simplicial complexes
● A simplicial complex is a collection of vertices and ...
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Simplicial complexes
● … edges (pairs of vertices) and ...
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Simplicial complexes
● ... higher dimensional simplices  (tuples of vertices)
● Whenever you have a simplex, you have all subsets, 

called faces, too.
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Stars over simplices
● The star over a simplex is that simplex along with all 

higher dimensional ones containing it
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Stars over simplices
● The star over a simplex is that simplex along with all 

higher dimensional ones containing it
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Stars over simplices
● Abstract simplicial complexes have a canonical partial 

order on faces, just given by subset

● Proposition: The collection of all possible stars and all 
possible unions of stars forms a topology for the set 
of simplices

…. and so the word star has the same meaning in 
both contexts

vertices

edges

faces

Simplicial complex Partial order
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What is a sheaf?

A sheaf of _____________ on a ______________
(data type) (topological space)
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Sheaves: a definition
A sheaf on a topological space X consists of 

A contravariant functor F from Open(X) to some 
subcategory of Vec; this is a “sheaf of vector spaces” 
F(U) for open U is called the space of sections over U

Each inclusion map UV is sent to a linear restriction map 
F(V)F(U).

Given a point p∈X, the colimit of F(U

), for all U

 
satisfying 

p∈U

 is called the stalk at p.  It's a generalization of the 

germ of a smooth function

And a gluing rule...
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Sheaves: a definition
A sheaf on a topological space X consists of 

A contravariant functor F from Open(X) to some 
subcategory of Vec; this is a “sheaf of vector spaces” 
F(U) for open U is called the space of sections over U

Each inclusion map UV is sent to a linear restriction map 
F(V)F(U).

Given a point p∈X, the colimit of F(U

), for all U

 
satisfying 

p∈U

 is called the stalk at p.  It's a generalization of the 

germ of a smooth function

And a gluing rule...
Sheaves assig

n local data to open sets
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Heterogeneous fusion among 
homogeneous sensors

“Physical” sensor footprints Sensor data space

Images Images
Camera 2

Camera 1

A sensor transforms a 
physical region into data
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“Physical” sensor footprints Sensor data space

Images Images

Detections

Summarization

Camera 2
Camera 1

Heterogeneous fusion among 
homogeneous sensors
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“Physical” sensor footprints Sensor data space

Images Images

Detections

Fused targets

Camera 2
Camera 1

G
lo

ba
liz

at
io

n

This construction – the data together 
with the transformations – is a sheaf

Heterogeneous fusion among 
homogeneous sensors
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Extending to collections of faces
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Simplicial complex Sheaf assigns data spaces 
to stars over each simplex
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Extending to collections of faces
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(And many more not shown)

The data spaces sew 
together by the gluing 
rule just described

Note: this process is canonical, so we merely need to specify data on a base 
for the topology and let gluing fill out the rest!
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Simplicial complexes
● ... higher dimensional simplices  (tuples of vertices)
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Simplicial complexes
● The attachment diagram shows how simplices fit 

together 
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● A set assigned to each simplex and ...

A sheaf is ...

ℝ3

ℝ2

ℝ

ℝ3

ℝ

ℝ2

ℝ2

ℝ3

ℝ3

Each such set is called the 
stalk over its simplex

This is a sheaf of vector spaces 
on a simplicial complex
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(   )

(   )

● … a function assigned to each simplex inclusion

A sheaf is ...

ℝ3

ℝ2

ℝ

ℝ2

ℝ

ℝ2

ℝ2

ℝ3

ℝ3

1  0  2
2  1 -1

0  0  1
1  0  0

1  0  1
0  1  1

(    )

(    )
(    )

0 1 1
1 0 1

1 0 0
2 1 0

1 0 0
0 1 1

1
0

0
1

(1 0)

(0 1)

(1 0)

( )
( )

(   )

Each such function is 
called a restriction
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● … so the diagram commutes.

A sheaf is ...

ℝ3

ℝ2

ℝ3

ℝ

 = 
(1 0)

(1 0)

(   )1 0 0
0 1 1

(   )1 0 0
2 1 0

(1 0) (   )1 0 0
0 1 1 (1 0)

(1 0)

(   )1 0 0
2 1 0

ℝ

ℝ2

ℝ2

ℝ3

ℝ3

1  0  2
2  1 -1

0  0  1
1  0  0

1  0  1
0  1  1

(    )

(    )
(    )

0
1

(0 1)

( )
1
0( )

0 1 1
1 0 1(   )
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( )

( )
( )

● An assignment of values from each of the stalks that 
is consistent with the restrictions

A global section is ...
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( )

( )

● They might not be defined on all simplices or disagree 
with restrictions

Some sections are only local

2
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ℝ2

A sheaf morphism ...
● … takes data in the stalks of two sheaves … 

ℝ3

ℝ2

ℝ2

ℝ2

ℝ2

ℝ2

2 0
1 1

1 1
2 0

0 1 0
1 0 0 1 0 0

0 1 0

1 0
0 1

0 1
1 0

(  ) (  ) (  )

(  )(   ) (   )
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(  )

(   )
ℝ2

A sheaf morphism ...
● … and relates them through linear maps … 

ℝ3

ℝ2

ℝ2

ℝ2

ℝ2

ℝ2

2 0
1 1

1 1
2 0

0 1 0
1 0 0 1 0 0

0 1 0

1 0
0 1

0 1
1 0

 ½  0
-½ -1

1  0
0 -1

 0 1
-1 0
 1 1

 0 -1
 1 0

(  ) (  ) (  )

(  )(   ) (   ) (  )

(  )
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(  )

(  )
(   )

(   )
ℝ2

A sheaf morphism ...
● … so the diagram commutes!

ℝ3

ℝ2

ℝ2

ℝ2

ℝ2

ℝ2

2 0
1 1

1 1
2 0

0 1 0
1 0 0 1 0 0

0 1 0

1 0
0 1

0 1
1 0

 ½  0
-½ -1

1  0
0 -1

 0 1
-1 0
 1 1

(  ) (  ) (  )

(  )(   )
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An algebraic interlude



Michael Robinson

The dimension theorem
Theorem: Linear maps between vector spaces are 
characterized by four fundamental subspaces

A                            B
f

ker f
coimage f image f

coker f
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Exactness of a sequence
Exactness of a sequence of maps, 

means that image f = ker g
A → B → C

f           g

f g

A B C
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Example: exact sequence

0
0

1 0
0 0
0 1
0 0

0 1 0 0
0 0 0 1
0 1 0 1 (1 1 -1) (0)

0             ℝ2              ℝ4                       ℝ3                   ℝ            0
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Properties of exact sequences
Exactness encodes useful properties of maps
● Injectivity

0 → A → B 
● Surjectivity

A → B → 0
● Isomorphism

0 → A → B → 0
● Quotient

0 → A → B → B / A → 0

f

f

f
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Chain complexes
Exactness is special and delicate.  Usually our sequences 
satisfy a weaker condition:

A chain complex

satisfies image f ⊆ ker g or equivalently g ∘ f = 0

Exact sequences are chain complexes, but not conversely

Homology measures the difference

A → B → C
f           g
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Homology of a chain complex
Starting with a chain complex

Homology is defined as

Vk Vk-1

dk Vk-2

dk-1Vk+1

dk+1

Hk = ker dk / image dk+1

All the vectors that are annihilated in 
stage k ... … that weren't already present in 

stage k + 1
Homology is trivial if and only if the chain complex is exact
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(  )

(   )

Exact sequences of sheaves
● Similar to vector spaces, we can also have sequences 

of sheaves with sheaf morphisms between them
● Such a sequence is exact if it's exact on stalks

(  )

ℝ3

ℝ2

ℝ2

ℝ2

0 1 0
1 0 0

0 1
1 0

 0 1
-1 0
 1 1

 0 -1
 1 0

(  ) (   )
(  )

ℝ2

ℝ2

0 1
0 0

(  ) 0 0
 0 0

-1 1 1
 0 0 0
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What is cellular sheaf cohomology?
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Global sections, revisited
● The space of global sections is combinatorially 

difficult to compute
● It's based on the idea that we can rewrite the basic 

condition(s) for a global section s of a sheaf �

� (v
1
)

� (e)

� (v
2
)

� (v
2
↝e)� (v

1
↝e)

� (v
1
↝e) s(v

1
) = � (v

2
↝e) s(v

2
)

+ � (v
1
↝e) s(v

1
) - � (v

2
↝e) s(v

2
) = 0

- � (v
1
↝e) s(v

1
) + � (v

2
↝e) s(v

2
) = 0

v
1

e v
2

(� (a↝b) is the restriction map connecting cell a to a cell b in a sheaf � )
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(                       )

Global sections, revisited
● The space of global sections is combinatorially 

difficult to compute
● It's based on the idea that we can rewrite the basic 

condition(s) for a global section s of a sheaf �

+� (v
1
↝e)   -� (v

2
↝e)            = 0

� (v
1
↝e) s(v

1
) = � (v

2
↝e) s(v

2
)

+ � (v
1
↝e) s(v

1
) - � (v

2
↝e) s(v

2
) = 0

- � (v
1
↝e) s(v

1
) + � (v

2
↝e) s(v

2
) = 0

s(v
1
)

s(v
2
)

(� (a↝b) is the restriction map connecting cell a to a cell b in a sheaf � )
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A queue as a sheaf
● Contents of the shift register at each timestep
● N = 3 shown

ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2

1 0 0
0 1 0

0 1 0
0 0 1(   )

(   )
0 1 0
0 0 1(   ) 0 1 0

0 0 1(   ) 0 1 0
0 0 1(   )

1 0 0
0 1 0(   ) 1 0 0

0 1 0(   )
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A single timestep
● Contents of the shift register at each timestep
● N = 3 shown

(1,9,2)(9,2) (1,9) (1,1)(1,1,9) (5,1,1) (2,5,1)(5,1)

1 0 0
0 1 0(   )1 0 0

0 1 0(   ) 1 0 0
0 1 0(   )

0 1 0
0 0 1(   )0 1 0

0 0 1(   ) 0 1 0
0 0 1(   ) 0 1 0

0 0 1(   )



Michael Robinson

(   )(   )

(   )(   )

Rewriting using matrices
● Same section, but the condition for verifying that it's 

a section is now written linear algebraically

(1,9,2) (1,9) (1,1)(1,1,9) (5,1,1)

1 0 0
0 1 0

1 0 0
0 1 0

0 1 0
0 0 1

0 1 0
0 0 1

1
9
2

1
1
9

5
1
1

1 0 0    0 -1  0    0  0  0
0 1 0    0  0 -1    0  0  0

0 0 0    1  0  0    0 -1  0
0 0 0    0  1  0    0  0 -1

0
0

0
0

=
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The cellular cochain complex
● Motivation: Sections being in the kernel of matrix 

suggests a higher dimensional construction exists!
● Goal: the cellular cochain complex for a sheaf �

● Cellular sheaf cohomology will be defined as

much the same as homology (but the chain 
complex goes up in dimension instead of down)

Čk(X; � ) Čk+1(X; � )
dk

Čk+2(X; � )
dk+1

Ck-1(X; � )
dk-1

Ȟk(X; � ) = ker dk / image dk-1
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Generalizing up in dimension
● Global sections lie in the kernel of a particular 

matrix
● We gather the domain and range from stalks over 

vertices and edges...  These are the cochain spaces

● An element of Čk(X; � ) is called a cochain, and 
specifies a datum from the stalk at each k-simplex

Čk(X; � ) = ⊕ � (a)
a is a k-simplex

(The direct sum operator ⊕ forms a new vector space by 
concatenating the bases of its operands)

Note: Ignore any k-
simplices that are 
missing faces in X
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The cellular cochain complex
● The coboundary map dk : Čk(X; � ) → Čk+1(X; � ) 

is given by the block matrix 

[b
i
:a

j
] � (a

j
↝b

i
) Row i

Column j

dk  =

0,  +1, or -1 
depending on the 
relative orientation 
of a

j
 and b

i
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The cellular cochain complex
● We've obtained the cellular cochain complex

● Cellular sheaf cohomology is defined as

Čk(X; � ) Čk+1(X; � )
dk

Čk+2(X; � )
dk+1

Ck-1(X; � )
dk-1

Ȟk(X; � ) = ker dk / image dk-1

All the cochains that are consistent in 
dimension k ...

… that weren't already present in 
dimension k - 1
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Cohomology facts
● Ȟ0(X; � ) is the space of global sections of �
● Ȟ1(X; � ) usually has to do with oriented, 

non-collapsible data loops

● Ȟk(X; � ) is a functor: sheaf morphisms 
induce linear maps between cohomology 
spaces

Nontrivial 
Ȟ1(X; ℤ)
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What is (actual) sheaf cohomology?
(which works even if your space 

isn't a simplicial complex)
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Čech resolution
● The cellular cochain complex can also be viewed as 

an exact sequence of sheaves: the Čech resolution
● Lemma: If U is a star over a point (simplex), then

is an exact sequence (of vector spaces)

Proof: (sketch) Note: stars make this much easier than the usual proof!

Č 0(U; � ) Č 1(U; � ) Č 2(U; � )� (U ) 0 

� ({v1})

� ({v1,v2})

� ({v1,v3})

� ({v1,v2,v3})

+

-
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Godement resolution
● What if you don't know how to organize the stalks by 

dimension?
● Well, you basically have to lump everything together

Č 0(U; � ) Č 1(U; � ) Č 2(U; � )� (U ) 0 

C 0(U; � ) = ⊕ � (a)� (U ) 0 
a is a star over a 
single point in U

Projecting out stars over 
simplices of different 
dimensions

If you have a simplicial complex…

… and if you don't
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Godement resolution
● Assuming U is a star over a single point, we have only 

one step of an exact sequence

C 0(U; � )� (U ) 0 
e

All the stalks of �  
over points in U

C 0(� ) is a sheaf, in 
which the restriction 
maps are projections!

U

V

C 0(U; � ) = � (U) ⊕ � (V)

C 0(V; � ) = � (V)

pr2
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Godement resolution
● We have only one step of an exact sequence, so 

construct another via exactness!

C 0(U; � )� (U ) 0 Z 1(U; � ) 0 
e

Cokernel of e

Basically all the stuff in C 0(U; � ) 
that aren't sections over U

This is a sheaf Z1(� )

All the stalks of �  
over points in U
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Godement resolution
● But Z 1(� ) is also a sheaf, so we can reuse our trick!

C 0(U; � )� (U ) 0 Z 1(U; � ) 0 
e

Z 1(U; � ) C 0(U; Z 1(� ))       
 =: C 1(U; � )

0 

All the stalks of Z 1(U; � )  
over points in U
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Godement resolution
● Giving us another step in our sequence!

C 0(U; � )� (U ) 0 C 1(U; � )
e

C 0(U; Z 1(� ))       
 =: C 1(U; � )

All the stalks of Z 1(U; � )  
over points in U
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Godement resolution
● And repeat!

C 0(U; � )� (U ) 0 C 1(U; � )
e

Z 2(U; � )

Z 2(U; � ) C 0(U; Z 2(� ))       
 =: C 2(U; � )

0 

All the stalks of Z 2(U; � )  
over points in U
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Godement resolution
● And repeat!

● We obtain an exact sequence of sheaves

C 0(U; � )� (U ) 0 C 1(U; � )
e

C 2(U; � )
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General sheaf cohomology
● If U isn't a star over a single point, this probably isn't 

an exact sequence…  

● Theorem: The homology of this resolution is the 
same as the cellular sheaf cohomology we computed 
for the simplicial complex!

● But it works even if the base space isn't a simplicial 
complex

C 0(U; � )� (U ) 0 C 1(U; � )
e

C 2(U; � )
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General sheaf cohomology ≅ 
cellular sheaf cohomology

Proof: We build what's called a chain morphism between the two 
resolutions.  

This chain morphism is homotopic to the identity chain morphism, 
and so preserves homology

C 0(U; � )� (U ) 0 C 1(U; � ) C 2(U; � )

Č 0(U; � ) Č 1(U; � ) Č 2(U; � )0 � (U ) 
=

Stalks of � over vertices

Stalks of � over vertices

Stalks of � over edges

. . .

1 0 …                    … 0
0 1 …identity map ... 0
0 0 …                     ... 1

Restriction maps to edges

More restriction maps
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General sheaf cohomology ≅ 
cellular sheaf cohomology

Proof: We build what's called a chain morphism between the two 
resolutions.  

This chain morphism is homotopic to the identity chain morphism, 
and so preserves homology

C 0(U; � )� (U ) 0 C 1(U; � ) C 2(U; � )

Č 0(U; � ) Č 1(U; � ) Č 2(U; � )0 � (U ) 
=

Claim: The C 0 sheaf is injective, 
which allows us to construct 
another map...
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General sheaf cohomology ≅ 
cellular sheaf cohomology

Proof: We build what's called a chain morphism between the two 
resolutions.  

This chain morphism is homotopic to the identity chain morphism, 
and so preserves homology

C 0(U; � )� (U ) 0 C 1(U; � ) C 2(U; � )

Č 0(U; � ) Č 1(U; � ) Č 2(U; � )0 � (U ) 
=

… which by composing with 
the top resolution allows us to 
iterate the process...
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General sheaf cohomology ≅ 
cellular sheaf cohomology

Proof: We build what's called a chain morphism between the two 
resolutions.  

This chain morphism is homotopic to the identity chain morphism, 
and so preserves homology

C 0(U; � )� (U ) 0 C 1(U; � ) C 2(U; � )

Č 0(U; � ) Č 1(U; � ) Č 2(U; � )0 � (U ) 
=

… which by composing with 
the top resolution allows us to 
iterate the process...
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C 0 (� ) is injective
● What this means is that starting with a diagram of 

black sheaf morphisms like the one below, you can 
construct the red sheaf morphism

0 A B

C 0(� )
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C 0 (� ) is injective
● This basically amounts to being able to extend a 

diagram like so, which is the prototypical sheaf with a 
projection for a restriction map

0 A' B'

0

0 A B

V

This has to be a zero map

You can 
construct 
this easily 
(exercise!)

Task: check commutativity of the 2 triangles and one square with red edges
You're given commutativity of the two squares with black and blue edges
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Coda: an example!
● Consider the sheaf � over a single edge:

● Its cellular cochain complex is 

● So that 

Ȟ0(� ) = ker d0 ≅ ℝ     Ȟ1(� ) = ℝ2 / image d0 ≅ ℝ

ℝ

ℝ2

ℝ
1
0

1
0

Č 0(X; � ) Č 1(X; � ) Č 2(X; � ) Č 3(X; � )
d 0 d 1 d 2

ℝ⊕ℝ ℝ2 0 0
d0 = 1 -1

0  0
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Coda: an example!
● Here's the Godement resolution … complicated, but doable!

ℝ

ℝ2

ℝ
1
0

1
0

ℝ⊕ℝ2

ℝ2
0 1 0
0 0 1

ℝ⊕ℝ2 ℝ2

ℝ2

0 1 0
0 0 1

0

ℝ2

ℝ2

0

1 0
0 1

1
1
0

1 -1 0
0  0  1

1 0
0 1

� C0(� ) Z1( � ) C1( � )

0

0

0

C2( � )
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Coda: an example!
● Here's the Godement resolution … complicated, but doable!

� C0(� ) Z1( � ) C1( � ) C2( � )

� (X) C0(X;� ) C1(X; � ) C2(X; � )m

� (X) mℝ⊕ℝ2⊕ℝ ℝ2⊕ℝ2 0

ℝ

ℝ2

ℝ
1
0

1
0

ℝ⊕ℝ2

ℝ2
0 1 0
0 0 1

ℝ⊕ℝ2 ℝ2

ℝ2

0 1 0
0 0 1

0

ℝ2

ℝ2

0

1 0
0 1

1
1
0

1 -1 0
0  0  1

1 0
0 1

0

0

0
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Coda: an example!
● Here's the Godement resolution … complicated, but doable!

ℝ

ℝ2

ℝ
1
0

1
0

ℝ⊕ℝ2

ℝ2
0 1 0
0 0 1

ℝ⊕ℝ2 ℝ2

ℝ2

0 1 0
0 0 1

0

ℝ2

ℝ2

0

1 0
0 1

1
1
0

1 -1 0
0  0  1

1 0
0 1

0

0

0

m=

1 -1 0
0  0  1
   -1  0  1
    0  1  0

rank m = 3

� (X) mℝ⊕ℝ2⊕ℝ ℝ2⊕ℝ2 0

H 0(� ) = ker m ≅ ℝ 

H1(� ) = ℝ4/image m ≅ ℝ 
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Conclusion!
● It's possible to compute the cohomology of sheaves 

over general finite topological spaces
● You can use the Godement resolution, which might 

be involved, but it's actually a finite calculation
● But if your space is a simplicial complex, then the 

cellular sheaf cohomology is much easier to compute
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For more information

Take MATH 496/696-001

Computational Algebraic Topology

Next semester!

(lots more diagrams will ensue!!!)

Michael Robinson

michaelr@american.edu

mailto:michaelr@american.edu
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